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Chapter 1

Introduction

Compilers, assemblers and similar tools generate all the binary code that proces-
sors execute. It is no surprise then that these tools play a major role in security
analysis and hardening of relevant binary code.

Often the only practical way to protect all binaries with a particular security
hardening method is to have the compiler do it. And, with software security
becoming more and more important in recent years, it is no surprise to see an
ever increasing variety of security hardening features and mitigations against
vulnerabilities implemented in compilers. Indeed, compared to a few decades ago,
today’s compiler developer is much more likely to implement security features
than not.

Furthermore, with the ever-expanding range of techniques implemented, it’s
very hard to gain a basic understanding of all security features implemented in
typical compilers.

This poses a practical problem: compiler developers must be able to work on
security hardening features, yet it’s hard to gain a good, basic understanding of
such compiler features.

There are a lot of materials that explain individual vulnerabilities or attack
vectors. There are also lots of presentations explaining specific exploits. But
there seems to be a limited set of materials that give a structured overview of
all vulnerabilities and exploits against which a code generator plays a role in
protecting.

This book aims to provide such a structured, broad overview. It does not
necessarily go into full details, instead aiming to give a thorough description of all
relevant high-level aspects of attacks, vulnerabilities, mitigations, and hardening
techniques. For further details, this book provides pointers to materials with
more details on specific techniques.

The purpose of this book is to serve as a guide to every compiler developer that
needs to learn about software security relevant to compilers. Even though the
focus is on compiler developers, we expect that this book will also be useful to
people working on other low-level software.
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1.1 Why an open source book?
The idea for this book emerged out of a frustration of not finding a good overview
on this topic. Kristof Beyls and Georgia Kouveli, both compiler engineers working
on security features, wished a book like this would exist. After not finding such a
book, they decided to try and write one themselves. They immediately realized
that they do not have all necessary expertise themselves to complete such a
daunting task. So they decided to try and create this book in an open source
style, seeking contributions from many experts.

As you read this, the book remains unfinished. This book may well never be
finished, as new vulnerabilities continue to be discovered regularly. Our hope is
that developing the book as an open source project will allow for it to continue to
evolve and improve. The open source development process of this book increases
the likelihood that it remains relevant as new vulnerabilities and mitigations
emerge.

Kristof and Georgia, the initial authors, are far from experts on all possible
vulnerabilities. So what is the plan to get high quality content to cover all
relevant topics? It is two-fold.

First, by studying specific topics, they hope to gain enough knowledge to write
up a good summary for this book.

Second, they very much invite and welcome contributions. If you’re interested
in potentially contributing content, please go to the home location for the open
source project at https://github.com/llsoftsec/llsoftsecbook.

As a reader, you can also contribute to making this book better. We highly
encourage feedback, both positive and constructive criticisms. We prefer feedback
to be received through https://github.com/llsoftsec/llsoftsecbook.

Add section describing the structure of the rest of the book.
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Chapter 2

Memory vulnerability based
attacks

2.1 A bit of background on memory vulnerabili-
ties

Memory access errors describe memory accesses that, although permitted by
a program, were not intended by the programmer. These types of errors are
usually defined (Hicks 2014) by explicitly listing their types, which include:

• buffer overflow
• null pointer dereference
• use after free
• use of uninitialized memory
• illegal free

Memory vulnerabilities are an important class of vulnerabilities that arise due
to these types of errors, and they most commonly occur due to programming
mistakes when using languages such as C/C++ . These languages do not provide
mechanisms to protect against memory access errors by default. An attacker can
exploit such vulnerabilities to leak sensitive data or overwrite critical memory
locations and gain control of the vulnerable program.

Memory vulnerabilities have a long history. The Morris worm in 1988 was the first
widely publicized attack exploiting a buffer overflow. Later, in the mid-90s, a few
famous write-ups describing buffer overflows appeared (Aleph One 1996). Stack
buffer overflows were mitigated with stack canaries and non-executable stacks.
The answer was more ingenious ways to bypass these mitigations: code reuse
attacks, starting with attacks like return-into-libc (Solar Designer 1997). Code
reuse attacks later evolved to Return-Oriented Programming (ROP) (Shacham
2007) and even more complex techniques.

To defend against code reuse attacks, the Address Space Layout Randomization
(ASLR) and Control-Flow Integrity (CFI) measures were introduced. This
interaction between offensive and defensive security research has been essential
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to improving security, and continues to this day. Each newly deployed mitigation
results in attempts, often successful, to bypass it, or in alternative, more complex
exploitation techniques, and even tools to automate them.

Memory safe (Hicks 2014) languages are designed with prevention of such vul-
nerabilities in mind and use techniques such as bounds checking and automatic
memory management. If these languages promise to eliminate memory vulnera-
bilities, why are we still discussing this topic?

On the one hand, C and C++ remain very popular languages, particularly in the
implementation of low-level software. On the other hand, programs written in
memory safe languages can themselves be vulnerable to memory errors as a result
of bugs in how they are implemented, e.g. a bug in their compiler. Can we fix
the problem by also using memory safe languages for the compiler and runtime
implementation? Even if that were as simple as it sounds, unfortunately there
are types of programming errors that these languages cannot protect against.
For example, a logical error in the implementation of a compiler or runtime for a
memory safe language can lead to a memory access error not being detected. We
will see examples of such logic errors in compiler optimizations in a later section.

Given the rich history of memory vulnerabilities and mitigations and the active
developments in this area, compiler developers are likely to encounter some of
these issues over the course of their careers. This chapter aims to serve as an
introduction to this area. We start with a discussion of exploitation primitives,
which can be useful when analyzing threat models . We then continue with a

Discuss
threat
models
elsewhere
in book
and refer
to that
section
here #161

more detailed discussion of the various types of vulnerabilities, along with their
mitigations, presented in a rough chronological order of their appearance, and,
therefore, complexity.

2.2 Exploitation primitives
Newcomers to the area of software security may find themselves lost in many
blog posts and other publications describing specific memory vulnerabilities and
how to exploit them. Two very common, yet unfamiliar to a newcomer, terms
that appear in such publications are read primitive and write primitive. In order
to understand memory vulnerabilities and be able to design effective mitigations,
it’s important to understand what these terms mean, how these primitives could
be obtained by an attacker, and how they can be used.

An exploit primitive is a mechanism that allows an attacker to perform a specific
operation in the memory space of the victim program. This is done by providing
specially crafted input to the victim program.

A write primitive gives the attacker some level of write access to the victim’s
memory space. The value written and the address written to may be controlled
by the attacker to various degrees. The primitive, for example, may allow:

• writing a fixed value to an attacker-controlled address, or
• writing to an address consisting of a fixed base and an attacker-controlled

offset limited to a specific range (e.g. a 32-bit offset) , or

Consider
describing
in more
detail why
the range
limitation
mat-
ters#162

• writing to an attacker-controlled base address with a fixed offset.
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Primitives can be further classified according to more detailed properties. See
slide 11 of (Miller, n.d.) for an example.

The most powerful version of a write primitive is an arbitrary write primitive,
where both the address and the value are fully controlled by the attacker.

A read primitive, respectively, gives the attacker read access to the victim’s
memory space. The address of the memory location accessed will be controlled
by the attacker to some degree, as for the write primitive. A particularly useful
primitive is an arbitrary read primitive, in which the address is fully controlled
by the attacker.

The effects of a write primitive are perhaps easier to understand, as it has obvious
side-effects: a value is written to the victim program’s memory. But how can an
attacker observe the result of a read primitive?

This depends on whether the attack is interactive or non-interactive (Hu et al.
2016).

• In an interactive attack, the attacker gives malicious input to the victim
program. The malicious input causes the victim program to perform the
read the attacker instructed it to, and to output the results of that read.
This output could be any kind of output, for example a network packet
that the victim transmits. The attacker can observe the result of the
read primitive by looking at this output, for example parsing this network
packet. This process then repeats: the attacker sends more malicious input
to the victim, observes the output and prepares the next input. You can
see an example of this type of attack in (Beer 2020), which describes a
zero-click radio proximity exploit.

• In a non-interactive (one-shot) attack, the attacker provides all malicious
input to the victim program at once. The malicious input triggers multiple
primitives one after the other, and the primitives are able to observe the
effects of the preceding operations through the victim program’s state. The
input could be, for example, in the form of a JavaScript program (Groß
2020), or a PDF file pretending to be a GIF (Beer and Groß 2021).

The references in this section describe complicated modern exploits. Con-
sider linking to simpler exploits, as well as some tutorial-level material.
#163

How does an attacker obtain these kinds of primitives in the first place? The
details vary, and in some cases it takes a combination of many techniques, some
of which are out of scope for this book. But we will be describing a few of them
in this chapter. For example a stack buffer overflow results in a (restricted) write
primitive when the input size exceeds what the program expected.

As part of an attack, the attacker will want to execute each primitive more than
once, since a single read or write operation will rarely be enough to achieve
their end goal (more on this later). How can primitives be combined to perform
multiple reads/writes?

In the case of an interactive attack, preparing and sending input to the victim
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program and parsing the output of the victim program are usually done in
an external program that drives the exploit. The attacker is free to use a
programming language of their choice, as long as they can interact with the
victim program in it. Let’s assume, for example, an exploit program in C,
communicating with the victim program over TCP. In this case, the primitives
are abstracted into C functions, which prepare and send packets to the victim,
and parse the victim’s responses. Using the primitives is then as simple as calling
these functions. These calls can be easily combined with arbitrary computations,
all written in C, to form the exploit.

For this cycle of repeated input/output interactions to work, the state of the
victim program must not be lost between the different iterations of providing
input and observing output. In other words, the victim process must not be
restarted.

It’s interesting to note that while the read/write primitives consist of carefully
constructed inputs to the victim program, the attacker can view these inputs as
instructions to the victim program. The victim program effectively implements
an interpreter unintentionally, and the attacker can send instructions to this
interpreter. This is explored further in (Dullien 2020).

In the case of a non-interactive attack, all computation happens within the
victim program. The duality of input data and code is even more obvious in
this case, as the malicious input to the victim can be viewed as the exploit code.
There are cases for which the input is obviously interpreted as code by the victim
application as well, as in the case of a JavaScript program given as input to
a JavaScript engine. In this case, the read/write primitives would be written
as JavaScript functions, which when called have the unintended side-effect of
accessing arbitrary memory that a JavaScript program is not supposed to have
access to. The primitives can be chained together with arbitrary computations,
also expressed in JavaScript.

There are, however, cases where the correspondence between data and code
isn’t as obvious. For example, in (Beer and Groß 2021), the malicious input
consists of a PDF file, masquerading as a GIF. Due to an integer overflow bug
in the PDF decoder, the malicious input leads to an unbounded buffer access,
therefore to an arbitrary read/write primitive. In the case of JavaScript engine
exploitation, the attacker would normally be able to use JavaScript operations
and perform arbitrary computations, making exploitation more straightforward.
In this case, there are no scripting capabilities officially supported. The attackers,
however, take advantage of the compression format intricacies to implement a
small computer architecture, in thousands of simple commands to the decoder. In
this way, they effectively introduce scripting capabilities and are able to express
their exploit as a program to this architecture.

So far, we have described read/write primitives. We have also discussed how an
attacker might perform arbitrary computations:

• in an external program in the case of interactive attacks, or
• by using scripting capabilities (whether originally supported or introduced

by the attacker) in non-interactive attacks.

Assuming an attacker has gained these capabilities, how can they use them to
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achieve their goals?

The ultimate goal of an attacker may vary: it may be, among other things, getting
access to a system, leaking sensitive information or bringing down a service.
Frequently, a first step towards these wider goals is arbitrary code execution
within the victim process. We have already mentioned that the attacker will
typically have arbitrary computation capabilities at this point, but arbitrary
code execution also involves things like calling arbitrary library functions and
performing system calls.

Some examples of how the attacker may use the obtained primitives:

• Leak information, such as pointers to specific data structures or code, or
the stack pointer.

• Overwrite the stack contents, e.g. to perform a ROP attack.
• Overwrite non-control data, e.g. authorization state. Sometimes this step

is sufficient to achieve the attacker’s goal, bypassing the need for arbitrary
code execution.

Once arbitrary code execution is achieved, the attacker may need to exploit
additional vulnerabilities in order to escape a process sandbox, escalate privilege,
etc. Such vulnerability chaining is common, but for the purposes of this chapter
we will focus on:

• Preventing memory vulnerabilities in the first place, thus stopping the
attacker from obtaining powerful read/write primitives.

• Mitigating the effects of read/write primitives, e.g. with mechanisms to
maintain Control-Flow Integrity (CFI).

2.3 Stack buffer overflows
A buffer overflow occurs when a read from or write to a data buffer exceeds its
boundaries. This typically results in adjacent data structures being accessed,
which has the potential of leaking or compromising the integrity of this adjacent
data.

When the buffer is allocated on the stack, we refer to a stack buffer overflow.
In this section we focus on stack buffer overflows since, in the absence of any
mitigations, they are some of the simplest buffer overflows to exploit.

The stack frame of a function includes important control information, such as
the saved return address and the saved frame pointer. Overwriting these values
unintentionally will typically result in a crash, but the overflowing values can be
carefully chosen by an attacker to gain control of the program’s execution.

Here is a simple example of a program vulnerable to a stack buffer overflow1:

#include <stdio.h>
#include <string.h>

void copy_and_print(char* src) {

1This is an oversimplified example for illustrative purposes. However, as this is a wide class
of vulnerabilities, many real-world examples can be found and studied.
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char dst[16];

for (int i = 0; i < strlen(src) + 1; ++i)
dst[i] = src[i];

printf("%s\n", dst);
}

int main(int argc, char* argv[]) {
if (argc > 1) {
copy_and_print(argv[1]);

}
}

In the code above, since the length of the argument is not checked before copying
it into dst, we have a potential for a buffer overflow.

When looking at code generated for AArch64 with GCC 11.22, the stack layout
looks like this:

Stack frame layout for stack buffer overflow example

The exact details of the stack frame layout, including the ordering of variables
and the exact control information stored, will depend on the specific compiler
version you use and the architecture you compile for.

As can be seen the stack diagram, an overflowing write in function
copy_and_print can overwrite the saved frame pointer (FP) and link register
(LR) in main’s frame. When copy_and_print returns, execution continues in
main. When main returns, however, execution continues from the address stored
in the saved LR, which has been overwritten. Therefore, when an attacker can
choose the value that overwrites the saved LR, it’s possible to control where the
program resumes execution after returning from main.

2The code is generated with the -fno-stack-protector option, to ensure GCC’s stack
guard feature is disabled. We also used the -O1 optimization level.
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Before non-executable stacks were mainstream, a common way to exploit these
vulnerabilities would be to use the overflow to simultaneously write shellcode3

to the stack and overwrite the return address so that it points to the shellcode.
(Aleph One 1996) is a classic example of this technique.

The obvious solution to this issue is to use memory protection features of the
processor in order to mark the stack (along with other data sections) as non-
executable4. However, even when the stack is not executable, more advanced
techniques can be used to exploit an overflow that overwrites the return address.
These take advantage of code that already exists in the executable or in library
code, and will be described in the next section.

Stack canaries are an alternative mitigation for stack buffer overflows. The
general idea is to store a known value, called the stack canary, between the
buffer and the control information (in the example, the saved FP and LR), and
to check this value before leaving the function. Since an overflow that would
overwrite the return address is going to overwrite the canary first, a corruption
of the return address through a stack buffer overflow will be detected.

This technique has a few limitations: first of all, it specifically aims to protect
against stack buffer overflows, and does nothing to protect against stronger
primitives (e.g. arbitrary write primitives). Control-flow integrity techniques,
which are described in the next section, aim to protect the integrity of stored
code pointers against any modification.

Secondly, since a compiler needs to generate additional instructions for ensuring
the canary’s integrity, heuristics are usually employed to determine which func-
tions are considered vulnerable. The additional instructions are then generated
only for the functions that are considered vulnerable. Since heuristics aren’t al-
ways perfect, this poses another potential limitation of the technique. To address
this, compilers can introduce various levels of heuristics, ranging from applying
the mitigations only to a small proportion of functions, to applying it universally.
See, for example, the -fstack-protector, -fstack-protector-strong and
-fstack-protector-all options offered by both GCC and Clang.

Another limitation is the possibility of leaks of the canary value. The canary
value is often randomized at program start but remains the same during the
program’s execution. An attacker who manages to obtain the canary value
at some point might, therefore, be able to reuse the leaked canary value and
corrupt control information while avoiding detection. Choosing a canary value
that includes a null byte (the C-style string terminator) might help in limiting
the damage of overflows coming from string manipulation functions, even when
the value is leaked.

Many buffer overflow vulnerabilities result from the use of unsafe library functions,
such as gets, or from the unsafe use of library functions such as strcpy. There
is extensive literature on writing secure C/C++ code, for example (Seacord
2013) and (Dowd, McDonald, and Schuh 2006). A different approach to limiting
the effects of overflows is library function hardening, which aims to detect buffer

3A shellcode is a short instruction sequence that performs an action such as starting a shell
on the victim machine.

4Note that the use of nested functions in GCC requires trampolines which reside on an
executable stack. The use of nested functions, therefore, poses a security risk.
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overflows and terminate the program gracefully. This involves the introduction
of feature macros like _FORTIFY_SOURCE (Sharma 2014).

Finally, it’s important to mention that not all buffer overflows aim to overwrite
a saved return address. There are many cases where a buffer overflow can
overwrite other data adjacent to the buffer, for example an adjacent variable
that determines whether authorization was successful, or a function pointer that,
when modified, can modify the program’s control flow according to the attacker’s
wishes.

Some of these vulnerabilities can be mitigated with the measures described in
this section, but often more general measures to ensure memory safety or Control-
Flow Integrity are necessary. For example, in addition to the hardening of specific
library functions, compilers can also implement automatic bounds checking for
arrays where the array bound can be statically determined (-fsanitize=bounds),
as well as various other “sanitizers”. We will describe these measures in following
sections.

2.4 Code reuse attacks
In the early days of memory vulnerability exploitation, attackers could simply
place shellcode of their choice in executable memory and jump to it. As non-
executable stack and heap became mainstream, attackers started to reuse code
already present in an application’s binary and linked libraries instead. A variety
of different techniques to this effect came to light.

The simplest of these techniques is return-to-libc (Solar Designer 1997). Instead
of returning to shellcode that the attacker has injected, the return address
is modified to return into a library function, such as system or exec. This
technique is simpler to use when arguments are also passed on the stack and
can therefore be controlled with the same stack buffer overflow that is used to
modify the address.

2.4.1 Return-oriented programming
Return-to-libc attacks restrict an attacker to whole library functions. While this
can lead to powerful attacks, it has also been demonstrated that it is possible
to achieve arbitrary computation by combining a number of short instruction
sequences ending in indirect control transfer instructions, known as gadgets.
The indirect control transfer instructions make it easy for an attacker to execute
gadgets one after another, by controlling the memory or register that provides
each control transfer instruction’s target.

In return-oriented programming (ROP) (Shacham 2007), each gadget performs
a simple operation, for example setting a register, then pops a return address
from the stack and returns to it. The attacker constructs a fake call stack (often
called a ROP chain) which ensures a number of gadgets are executed one after
another, in order to perform a more complex operation.

This will hopefully become more clear with an example: a ROP chain for AArch64
Linux that starts a shell, by calling execve with "/bin/sh" as an argument.
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The prototype of the execve library function, which wraps the exec system call,
is:

int execve(const char *pathname, char *const argv[],
char *const envp[]);

For AArch64, pathname will be passed in the x0 register, argv will be passed in
x1, and envp in x2. For starting a shell, it is sufficient to:

• Make x0 contain a pointer to "/bin/sh".
• Make x1 contain a pointer to an array of pointers with two elements:

– The first element is a pointer to "/bin/sh".
– The second element is zero (NULL).

• Make x2 contain zero (NULL).

This can be achieved by chaining gadgets to set the registers x0, x1, x2, and
then returning to execve in the C library.

Let’s assume we have the following gadgets:

1. A gadget that loads x0 and x1 from the stack:

gadget_x0_x1:
ldp x0, x1, [sp]
ldp x20, x19, [sp, #64]
ldp x29, x30, [sp, #32]
ldr x21, [sp, #48]
add sp, sp, #0x50
ret

2. A gadget that sets x2 to zero, but also clears x0 as a side-effect:

gadget_x2:
mov x2, xzr
mov x0, x2
ldp x20, x19, [sp, #32]
ldp x29, x30, [sp]
ldr x21, [sp, #16]
add sp, sp, #0x30
ret

Explain how these gadgets could result from C/C++ code. The current
versions are slightly tweaked by hand to have more manageable offsets. #164

Both gadgets also clobber several uninteresting registers, but since gadget_x2
also clears x0, it becomes clear that we should use a ROP chain that:

1. Returns to gadget_x2, which sets x2 to zero.
2. Returns to gadget_x0_x1, which sets x0 and x1 to the desired values.
3. Returns to execve.

Figure 1 shows this control flow.

We can achieve this by constructing the fake call stack shown in figure 2, where
“Original frame” marks the frame in which the address of gadget_x2 has replaced
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Figure 1: ROP example control flow

a saved return address that will be loaded and returned to in the future. As
an alternative, an attacker could place this fake call stack somewhere else, for
example on the heap, and use a primitive that changes the stack pointer’s value
instead. This is known as stack pivoting.

Note that this fake call stack contains NULL bytes, even without considering
the exact values of the various return addresses included. An overflow bug that
is based on a C-style string operation would not allow an attacker to replace
the stack contents with this fake call stack in one go, since C-style strings are
null-terminated and copying the fake stack contents would stop once the first
NULL byte is encountered. The ROP chain would therefore need to be adjusted
so that it doesn’t contain NULL bytes, for example by initially replacing the
NULL bytes with a different byte and adding some more gadgets to the ROP
chain that write zero to those stack locations.

A question that comes up when looking at the stack diagram is “how do we
know the addresses of these gadgets”? We will talk a bit more about this in the
next section.

ROP gadgets like the ones used here may be easy to identify by visual inspection
of a disassembled binary, but it’s common for attackers to use “gadget scanner”
tools in order to discover large numbers of gadgets automatically. Such tools can
also be useful to a compiler engineer working on a code reuse attack mitigation,
as they can point out code sequences that should be protected and have been
missed.

2.4.2 Jump-oriented programming
Jump-oriented programming (JOP) (Bletsch et al. 2011) is a variation on ROP,
where gadgets can also end in indirect branch instructions instead of return
instructions. The attacker chains a number of such gadgets through a dispatcher
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Figure 2: ROP example fake call stack
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gadget, which loads pointers one after another from an array of pointers, and
branches to each one in return. The gadgets used must be set up so that they
branch or return back to the dispatcher after they’re done. This is demonstrated
in figure 3.

Figure 3: JOP example

The gadgets in the figure are made up, chosen to highlight that each gad-
get can end in a different type of indirect control flow transfer instruction.
Consider replacing them with more realistic ones. #165

In figure 3, x4 initially points to the “dispatch table”, which has been modified by
the attacker to contain the addresses of the three gadgets they want to execute.
The dispatcher gadget loads each address in the dispatch table one by one and
branches to them. The first gadget loads x0 and x1 from the stack, where the
attacker has placed the inputs of their choice. It then loads its return address,
also modified by the attacker so that it points back to the dispatcher gadget,
and returns to it. The dispatcher branches to the next gadget, which adds x0
and x1 and leaves the result in x0, branching back to the dispatcher through
another value loaded from the stack into x2. The final gadget stores the result
of the addition, which remains in x0, to the stack, before branching to x2, which
still points to the dispatcher gadget.

2.4.3 Counterfeit Object-oriented programming
Counterfeit Object-oriented programming (COOP) (Schuster et al. 2015) is a
code reuse technique that takes advantage of C++ virtual function calls. A
COOP attack takes advantage of existing virtual functions and vtables, and
creates fake objects pointing to these existing vtables. The virtual functions used
as gadgets in the attack are called vfgadgets. To chain vfgadgets together, the
attacker uses a “main loop gadget”, similar to JOP’s dispatcher gadget, which is
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itself a virtual function that loops over a container of pointers to C++ objects
and invokes a virtual function on these objects. (Schuster et al. 2015) describes
the attack in more detail. It is specifically mentioned here as an example of
an attack that doesn’t depend on directly replacing return addresses and code
pointers, like ROP and JOP do. Such language-specific attacks are important to
consider when considering mitigations against code reuse attacks, which will be
the topic of the next section.

2.4.4 Sigreturn-oriented programming
One last example of a code reuse attack that is worth mentioning here is sigreturn-
oriented programming (SROP) (Bosman and Bos 2014). It is a special case of
ROP where the attacker creates a fake signal handler frame and calls sigreturn.
sigreturn is a system call on many UNIX-type systems which is normally called
upon return from a signal handler, and restores the state of the process based
on the state that has been saved on the signal handler’s stack by the kernel
previously, on entry to the signal handler. The ability to fake a signal handler
frame and call sigreturn gives an attacker a simple way to control the state of
the program.

2.5 Mitigations against code reuse attacks
When discussing mitigations against code reuse attacks, it is important to keep
in mind that there are two capabilities the attacker must have for such attacks
to work:

• the ability to overwrite return addresses or function pointers
• knowledge of the target addresses to overwrite them with (e.g. libc function

entry points).

When code reuse attacks were first described, programs used to contain absolute
code pointers, and needed to be loaded at fixed addresses. The stack base was
predictable, and libraries were loaded in predictable memory locations. This
made code reuse attacks simple, as all of the addresses needed for a successful
exploit were easy to discover.

2.5.1 ASLR
Address space layout randomization (ASLR) makes this more difficult by ran-
domizing the positions of the memory areas containing the executable, the loaded
libraries, the stack and the heap. ASLR requires code to be position-independent.
Given enough entropy, the chance that an attacker would successfully guess one
or more addresses in order to mount a successful attack will be greatly reduced.

Does this mean that code reuse attacks have been made redundant by ASLR?
Unfortunately, this is not the case. There are various ways in which an attacker
can discover the memory layout of the victim program. This is often referred to
as an “info leak” (Serna 2012).

Since we can not exclude code reuse attacks solely by making addresses hard
to guess, we need to also consider mitigations that prevent attackers from
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overwriting return addresses and other code pointers. Some of the mitigations
described earlier, like stack canaries and library function hardening, can help in
specific situations, but for the more general case where an attacker has obtained
arbitrary read and write primitives, we need something more.

2.5.2 CFI
Control-flow integrity (CFI) is a family of mitigations that aim to preserve the
intended control flow of a program. This is done by restricting the possible
targets of indirect branches and returns. A scheme that protects indirect jumps
and calls is referred to as forward-edge CFI, whereas a scheme that protects
returns is said to implement backward-edge CFI. Ideally, a CFI scheme would not
allow any control flow transfers that don’t occur in a correct program execution,
however different schemes have varying granularities. They often rely on function
type checks or use static analysis (points-to analysis) to identify potential control
flow transfer targets. (Burow et al. 2017) compares a number of available CFI
schemes based on the precision. For forward-edge CFI schemes, for example,
schemes are classified based on whether or not they perform, among others,
flow-sensitive analysis, context-sensitive analysis and class-hierarchy analysis.

2.5.2.1 Clang CFI

Clang’s CFI includes a variety of forward-edge control-flow integrity checks.
These include checking that the target of an indirect function call is an address-
taken function of the correct type and checking that a C++ virtual call happens
on an object of the correct dynamic type.

For example, assume we have a class A with a virtual function foo and a class B
deriving from A, and that these classes are not exported to other compilation
modules:

class A {
public:
virtual void foo() {}

};

class B : public A {
public:
virtual void foo() {}

};

void call_foo(A* a) {
a->foo();

}

When compiling with -fsanitize=cfi -flto -fvisibility=hidden 5, the
code for call_foo would look something like this:

00000000004006b4 <call_foo(A*)>:
4006b4: a9bf7bfd stp x29, x30, [sp, #-16]!
4006b8: 910003fd mov x29, sp
5The LTO and visibility flags are required by Clang’s CFI.
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4006bc: f9400008 ldr x8, [x0]
4006c0: 90000009 adrp x9, 400000 <_init-0x558>
4006c4: 91216129 add x9, x9, #0x858
4006c8: cb090109 sub x9, x8, x9
4006cc: d1004129 sub x9, x9, #0x10
4006d0: 93c91529 ror x9, x9, #5
4006d4: f100093f cmp x9, #0x2
4006d8: 540000a2 b.cs 4006ec <call_foo(A*)+0x38>
4006dc: f9400108 ldr x8, [x8]
4006e0: d63f0100 blr x8
4006e4: a8c17bfd ldp x29, x30, [sp], #16
4006e8: d65f03c0 ret
4006ec: d4200020 brk #0x1

This code looks complicated, but what it does is check that the virtual table
pointer (vptr) of the argument points to the vtable of A or of B, which are stored
consecutively and are the only allowed possibilities. The checks generated for
different types of control-flow transfers are similar.

Another implementation of forward-edge CFI is Windows Control Flow Guard,
which only allows indirect calls to functions that are marked as valid indirect
control flow targets.

2.5.2.2 Clang Shadow Stack

Clang also implements a backward-edge CFI scheme known as Shadow Stack.
In Clang’s implementation, a separate stack is used for return addresses, which
means that stack-based buffer overflows cannot be used to overwrite return
addresses. The address of the shadow stack is randomized and kept in a dedicated
register, with care taken so that it is never leaked, which means that an arbitrary
write primitive cannot be used against the shadow stack unless its location is
discovered through some other means.

As an example, when compiling with -fsanitize=shadow-call-stack
-ffixed-x18 6, the code generated for the main function from the earlier stack
buffer overflow example will look something like:

main:
cmp w0, #2
b.lt .LBB1_2
str x30, [x18], #8
stp x29, x30, [sp, #-16]!
mov x29, sp
ldr x0, [x1, #8]
bl copy_and_print
ldp x29, x30, [sp], #16
ldr x30, [x18, #-8]!

.LBB1_2:
mov w0, wzr
ret

6The -ffixed-x18 flag results in treating the x18 register as reserved, and is required by
-fsanitize=shadow-call-stack on some platforms.
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You can see that the shadow stack address is kept in x18. The return address is
also saved on the “normal” stack for compatibility with unwinders, but it’s not
actually used for the function return.

2.5.2.3 Pointer Authentication

In addition to software implementations, there are a number of hardware-based
CFI implementations. A hardware-based implementation has the potential to
offer improved protection and performance compared to an equivalent software-
only CFI scheme.

One such example is Pointer Authentication (Rutland 2017), an Armv8.3 feature,
supported only in AArch64 state, that can be used to mitigate code reuse attacks.
Pointer Authentication introduces instructions that generate a pointer signature,
called a Pointer Authentication Code (PAC), based on a key and a modifier. It
also introduces matching instructions to authenticate this signature. Incorrect
authentication leads to an unusable pointer, that will cause a fault when used 7.
The key is not directly accessible by user space software.

Pointers are stored as 64-bit values, but they don’t need all of these bits to
describe the available address space, so a number of bits in the top of each
pointer are unused. The unused bits must be all ones or all zeros, so we refer
to them as extension bits. Pointer Authentication Codes are stored in those
unused extension bits of a pointer. The exact number of PAC bits depends on
the number of unused pointer bits, which varies based on the configuration of
the virtual address space size.8

Clang and GCC both use Pointer Authentication for return address signing,
when compiling with the -mbranch-protection=pac-ret flag. When compiling
with Clang using this flag, the main function from the earlier stack buffer overflow
example looks like:

main:
cmp w0, #2
b.lt .LBB1_2
paciasp
stp x29, x30, [sp, #-16]!
ldr x0, [x1, #8]
mov x29, sp
bl copy_and_print
ldp x29, x30, [sp], #16
autiasp

.LBB1_2:
mov w0, wzr
ret

Notice the paciasp and autiasp instructions: paciasp computes a PAC for
the return address in the link register (x30), based on the current value of the
stack pointer (sp) and a key. This PAC is inserted in the extension bits of

7With the FPAC extension, a fault is raised at incorrect authentication.
8If the Top-Byte-Ignore (TBI) feature is enabled, the top byte of pointers is ignored when

performing memory accesses. This restricts the number of available PAC bits.
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the pointer. We then store this signed version of the link register on the stack.
Before returning, we load the signed return address from the stack, we execute
autiasp, which verifies the PAC stored in the return address, again based on
the value of the key and the value of the stack pointer (which at this point
will be the same as when we signed the return address). If the PAC is correct,
which will be the case in normal execution, the extension bits of the address are
restored, so that the address can be used in the ret instruction. However, if the
stored return address has been overwritten with an address with an incorrect
PAC, the upper bits will be corrupted so that subsequent uses of the address
(such as in the ret instruction) will result in a fault.

By making sure we don’t store any return addresses without a PAC, we can
significantly reduce the effectiveness of ROP attacks: since the secret key is not
retrievable by an attacker, an attacker cannot calculate the correct PAC for a
given address and modifier, and is restricted to guessing it. The probability of
success when guessing a PAC depends on the exact number of PAC bits available
in a given system configuration. However, authenticated pointers are vulnerable
to pointer substitution attacks, where a pointer that has been signed with a
given modifier is replaced with a different pointer that has also been signed with
the same modifier.

Another backward-edge CFI scheme that uses Pointer Authentication instructions
is PACStack (Liljestrand et al. 2021), which chains together PACs in order to
include the full context (all of the previous return addresses in the call stack)
when signing a return address.

Add
more ref-
erences to
relevant
research
#166

Pointer Authentication can also be used more widely, for example to implement
a forward-edge CFI scheme, as is done in the arm64e ABI (McCall and Bougacha
2019). The Pointer Authentication instructions, however, are generic enough to
also be useful in implementing more general memory safety measures, beyond
CFI.
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2.5.2.4 BTI

Branch Target Identification (BTI) , introduced in Armv8.5, offers coarse-grained
forward-edge protection. With BTI, the locations that are targets of indirect
branches have to be marked with a new instruction, BTI. There are four different
types of BTI instructions that permit different types of indirect branches (indirect
jump, indirect call, both, or none). An indirect branch to a non-BTI instruction
or the wrong type of BTI instruction will raise a Branch Target Exception.

Both Clang and GCC support generating BTI instructions, with the
-mbranch-protection=bti flag, or, to enable both BTI and return address
signing with Pointer Authentication, -mbranch-protection=standard.

Two aspects of BTI can simplify its deployment: individual pages can be marked
as guarded or unguarded, with BTI checks as described above only applying
to indirect branches targeting guarded pages. In addition to this, the BTI
instruction has been assigned to the hint space, therefore it will be executed as
a no-op in cores that do not support BTI, aiding its adoption.
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2.5.2.5 CFI implementation pitfalls

When implementing CFI measures like the ones described here, it is important
to be aware of known weaknesses that affect similar schemes. (Conti et al. 2015)
describes how CFI implementations can suffer when certain registers are spilled
on the stack, where they could be controlled by an attacker. For example, if a
register that contains a function pointer that has just been validated gets spilled,
the check can effectively be bypassed by overwriting the spilled pointer.

Having discussed various mitigations against code reuse attacks, it’s time to turn
our attention to a different type of attacks, which do not try to overwrite code
pointers: attacks against non-control data, which will be the topic of the next
section.

2.6 Non-control data attacks
In the previous sections, we have focused on subverting control flow by overwriting
control data, which are used to change the value of the program counter, such
as return addresses and function pointers. Since these types of attacks are
prominent, many mitigations have been designed with the goal of maintaining
control-flow integrity. Non-control data attacks, also known as data-only attacks,
can completely bypass these mitigations, since the data they modify is not the
control data that these mitigations protect.

Non-control data attacks can range from very simple attacks targeting a single
piece of data to very elaborate attacks with very high expressiveness (Beer and
Groß 2021). A very simple example may look something like this:

// Returns zero for failure, non-zero for success.
int authenticate() {
int authenticated = 0;
char passphrase[10];
if (fgets(passphrase, 20, stdin)) { // buffer overflow
if (!strcmp(passphrase, "secret\n")) {
authenticated = 1;

}
}
return authenticated;

}

The example shows a simplified9 function that reads a passphrase from a user,
compares it with a known value and sets an integer stack variable to indicate
whether “authentication” was successful or not. The function contains a very
obvious buffer overflow, as the string length limit passed to fgets does not
match the buffer size.

Figure 4 shows the stack frame layout for this function when the code is compiled
for AArch64 with Clang 10.010. As the figure shows, an overflow of passphrase

9This is obviously not a realistic example of how authentication should be done, but simply
serves to illustrate how a buffer overflow into a non-control variable can have serious security
consequences.

10The stack frame layout may be significantly different for other architectures and compilers.
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will overwrite authenticated, setting it to a non-zero value, even though the
passphrase was incorrect. The authenticate function will then return a non-zero
value, incorrectly indicating authentication success.

Figure 4: Stack frame for authenticate

For many more simple examples of data-only attacks that can occur in real
applications, see (Chen et al. 2005). Although this makes it clear that data-only
attacks are a real issue, it leaves open a very important question: what are
the limits of such attacks? It is tempting to assume that data-only attacks
are somehow inherently limited, however it has been demonstrated in (Hu et
al. 2016) that they can, in fact, be very expressive. (Hu et al. 2016) describes
Data-Oriented Programming (DOP), a general method for building data-only
attacks against a vulnerable program, starting from a known memory error in
the program11.

The authors of (Hu et al. 2016) describe a small language called MINDOP, with
a virtual instruction set and virtual registers. The virtual registers of MINDOP
correspond to memory locations. The MINDOP instructions correspond to
operations on these virtual registers, for example loading a value into a virtual
register, storing a value from a virtual register, arithmetic operations and even
conditional and unconditional jumps. The authors show how to identify gadgets
in the code that implement the various MINDOP instructions and are reachable
from memory errors, and how those gadgets can be stitched together with the
help of dispatcher gadgets, the role of which is specifically to chain gadgets
together.

Stitching gadgets together is simpler for interactive attacks, where the attacker
can keep providing malicious input to trigger the initial memory error and a
certain chain of gadgets, as many times as needed. For non-interactive attacks,

11The authors describe how DOP gadgets can be chained to simulate a Turing machine,
making DOP attacks Turing-complete (it’s not possible to simulate the infinite tape of a
Turing machine on any actual hardware, of course). Turing-completeness is not, however, a
particularly useful measure of exploitability, as explained in (Flake 2018). Many applications
offer their users the ability to perform arbitrary computation, for example JavaScript engines,
and those capabilities can be useful to an attacker, but performing a computation without
affecting normal program behavior does not constitute “exploitation”.
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the MINDOP jump operations are required as well, used in conjunction with a
memory location that provides a virtual program counter.

The process of creating a DOP attack is not so simple and not fully automated.
Related literature (Ispoglou et al. 2018) focuses on automating data-only attacks.

When reading write-ups on recent security issues, instead of terminology related
to data-oriented gadgets, you are more likely to encounter the term “primitive”,
which has been described in an earlier section. These concepts are related: an
arbitrary read primitive, for example, can be produced by chaining a (possibly
large) number of DOP gadgets. Talking about primitives offers a nicer level of
abstraction, as it tends to be simpler to reason in terms of higher-level operations
instead of many small pieces of code that need to be stitched together to perform
the operations.

To summarize, data-only attacks are a significant concern. As most of the
mitigation techniques we have seen so far are control-flow oriented, they are by
design inadequate to protect against this different type of attacks. In the next
section, we will look at what we can do to address them at their source: memory
errors.

2.7 Preventing and detecting memory errors
We have so far discussed how languages that are not memory safe, like C and
C++, are vulnerable to memory errors and therefore exploitation. In this section,
we will discuss tools that are available to C/C++ programmers to help them
detect vulnerabilities that can lead to memory errors.

2.7.1 Sanitizers
Sanitizers are tools that detect bugs during program execution. Sanitizers
usually have two components: a compiler instrumentation part that introduces
the new checks, and a runtime library part. They are often too expensive to
run in production mode, as they tend to increase execution time and memory
usage. They are commonly used during testing of an application, frequently in
combination with fuzzers12.

A very popular sanitizer is Address Sanitizer (ASan). It aims to detect various
memory errors. These include out-of-bounds accesses, use-after-free, double-free
and invalid free13. There are Address Sanitizer implementations for both GCC
and Clang, but we will focus on the Clang implementation here.

ASan uses shadow memory to keep track of the state of the application’s memory.
Each byte of shadow memory records information on 8 bytes of the application’s
memory. It represents how many of the 8 bytes are addressable. When none of
the bytes are addressable, it encodes additional details (whether the 8 bytes are
out-of-bounds stack, out-of-bounds heap, freed memory, and so on). Requiring
one byte of shadow memory for every 8 bytes of application memory means
that ASan needs to reserve one-eighth of the application’s virtual address space

12Fuzzing is a powerful testing technique that relies on automatically generating large
amounts of random inputs to the program under test.

13ASan also includes a memory leak detector .
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(Serebryany et al. 2012). Shadow memory is allocated in one contiguous chunk,
which keeps mapping application memory to shadow memory simple.

ASan’s runtime library replaces memory allocation functions like malloc and
free with its own specialized versions. malloc introduces redzones before and
after each allocation, which are marked as unaddressable. free marks the entire
allocation as unaddressable and places it in quarantine, so that it doesn’t get
reallocated for a while (in a FIFO basis). This allows for detecting use-after-free.
The runtime library also handles management of the shadow memory.

ASan’s code instrumentation in the compiler introduces redzones around each
stack array allocation, and around globals. It then instruments loads and stores
to check whether the accessed memory is addressable, based on the information
stored in the shadow memory, and reports an error if unaddressable memory is
accessed.

ASan doesn’t produce false positives and is easy to use. It requires compiling and
linking a program with the -fsanitize=address option. It is used in practice
for testing large projects. There is a similar tool for dynamic memory error
detection in the Linux kernel, KASAN.

ASan’s biggest drawback is its high runtime overhead and memory usage, due to
the quarantine, redzones and shadow memory. Hardware-assisted AddressSani-
tizer (HWASAN) works similarly to ASan, but with partial hardware assistance
can result in lower memory overheads, at the cost of being less portable.

On AArch64, HWASAN uses Top-Byte Ignore (TBI). When TBI is enabled, the
top byte of a pointer is ignored when performing a memory access, allowing
software to use that top byte to store metadata, without affecting execution.
Each allocation is aligned to 16 bytes and each 16-byte chunk of memory (called
“granule”) is randomly assigned an 8-bit tag. The tag is stored in shadow memory
and is also placed in the top byte of the pointer to the object. Memory loads and
stores are then instrumented to check that the tag stored in the pointer matches
the tag stored in memory, and report an error when a mismatch happens.

Add
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For granules shorter than 16 bytes, the value stored in shadow memory is not
the actual tag, but the length of the granule. The actual tag is stored at the
last byte of the granule itself. For tags in shadow memory with values between 1
and 15, HWASAN checks that the access is within the bounds of the granule
and the pointer tag matches the tag stored at the last byte of the granule.

HWASAN is also easy to use, and simply requires compiling and linking an
application with the -fsanitize=hwaddress flag.

MemTagSanitizer goes one step further and uses the Armv8.5-A Memory Tag-
ging Extension (MTE). With MTE, the tag checking is done automatically by
hardware, and an exception is raised on mismatch. MTE’s granule size is 16
bits, whereas tags are 4-bit.

Consider
adding
a whole
section on
MTE and
its applica-
tions #169

UndefinedBehaviorSanitizer (UBSan) detects undefined behavior during program
execution, for example array out-of-bounds accesses for statically determined
array bounds, null pointer dereference, signed integer overflow and various kinds
of integer conversions that result in data loss. Although some of these checks
are not directly related to memory errors, these kinds of errors can lead to
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incorrect pointer arithmetic, incorrect allocation sizes, and other issues that lead
to memory errors, so it is important to detect them and address them.

UBSan’s documentation describes the full list of available checks. The majority
of these checks are enabled with the -fsanitize=undefined flag, but there
are also other useful groupings of checks, for example -fsanitize=integer for
checks related to integer conversions and arithmetic.

There are many other sanitizers, more than can reasonably be covered in this
section. For the interested reader, we list a few more:

• MemorySanitizer: detects uninitialized reads.
• ThreadSanitizer: detects data races.
• GWP-ASan: detects use-after-free and heap buffer overflows, with low

overhead that makes it suitable for production environments. It performs
checks only on a sample of allocations.

Describe other mechanisms for detecting memory errors, both software-
based (static analysis, library and buffer hardening) and hardware-based,
e.g. PAuth-based pointer integrity schemes, MTE etc #170

2.7.2 Bounds checking
Making sure that memory accesses happen within the bounds of each object’s
allocation is a very important part of memory safety. This is usually described
with the term “spatial memory safety”. Out-of-bounds accesses result in restricted
read/write primitives14. An attacker can often easily convert these into arbitrary
read/write primitives. For example, this can be achieved by overwriting pointer
fields in allocations following the object that was the target of the problematic
memory access.

The C and C++ memory languages do not, as a general rule, perform bounds
checking15. This is one of the sources of memory errors in C/C++ programs.
However, compilers have a history of introducing bounds checks, even though
the language does not require them, in an effort to improve security of existing
C/C++ codebases.

One of the simplest compiler options is -Warray-bounds, which warns when an
array access is always out of bounds. This is therefore restricted to arrays with
statically known size. This option is supported by both GCC and Clang.

Another option supported by both compilers is -fsanitize=bounds, included
in UBSan, which checks the bounds for accesses to statically sized arrays at
runtime. This handles more cases than -Warray-bounds, as it can also check
accesses to dynamic indices. However, it’s still limited, as it cannot perform
bounds checks on dynamically sized arrays, and it is still restricted to array

14These primitives are restricted since they can only access a limited number of bytes past
the end of the allocation.

15Some C++ containers have accessors that do perform bounds checking, for example
std::array::at() and std::vector::at().
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bounds checking. A more comprehensive solution would also cover pointers in
general, especially if pointer arithmetic is performed.

You may notice that there is a bit of overlap between the bounds checks introduced
by -fsanitize=bounds and the Address Sanitizer. Although the scope of
-fsanitize=bounds is restricted to statically sized arrays, it’s interesting to
note that it can still catch intra-object overflows on array member accesses that
the Address Sanitizer would not, because the access is still technically within
the allocation. For example, given the following code:

struct foo {
int a[6];
int b;

};

int get(struct foo *x, int i) {
return x->a[i];

}

a call to get(f, 6) will give an error with -fsanitize=bounds, but not with
-fsanitize=address.

Clang and GCC also support two builtin functions that return information
on the size of a variable. __builtin_object_size can be used for objects
of statically known size and always evaluates at compile time, whereas
__builtin_dynamic_object_size can also propagate dynamic information
from allocation functions that have been marked with the alloc_size function
attribute. These two builtins can be then used to introduce bounds checks
in user or library code. For example, the _FORTIFY_SOURCE macro instructs
glibc to introduce bounds checks in various string and memory manipulation
functions, such as memcpy. The number of checks increases as the value of the
macro increases (the used values are currently 1-3). For example, the lower
two levels won’t use the __builtin_dynamic_object_size builtin, as it has a
runtime overhead, additional to that of the checks themselves.

In order to support bounds checking for dynamically sized arrays, a recent
proposal for GCC and Clang proposes the addition of a struct member attribute,
element_count. This attribute will apply to flexible array members in structs,
indicating another member of the struct that expresses the array’s length.

The -fbounds-safety proposal goes a bit further, introducing a similar an-
notation that can be applied to pointers more generally. The proposal also
aims to reduce the annotation burden placed on programmers by only requiring
the annotations at ABI boundaries16. Local variables which do not cross ABI
boundaries are implicitly converted to use wide pointers. These wide pointers
store bounds information alongside the original pointer.

16This refers to the interface between different binary modules, typically a user program
and a system library. The ABI describes low-level details of that interface, for example the
assignment of arguments and return values into registers or memory. In many systems, the
ABI is expected to change rarely, so programs and libraries can be updated independently and
still work together. This makes ABI changes undesirable, which is why this proposal aims to
minimise them.
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There are also hardening efforts focusing on C++ codebases. For example, the
“safe libc++” mode enables a number of assertions that aim to catch undefined
behaviour in the library. The C++ Buffer Hardening proposal aims to extend
this library hardening. The proposal will also introduce a programming model
in which all pointer arithmetic is considered unsafe. Pointer arithmetic will have
to be replaced with alternatives from the C++ library, for example std::array.
The implementation of these alternatives in the hardened library will include
bounds checks.

Successfully using bounds checking compiler features for a large codebase requires
substantial effort. An example of this is refactoring the Linux kernel to use
bounds checks for flexible arrays, as described in (Cook 2023).

There are also hardware-based mitigations for violations of spatial memory
safety. For example, CHERI introduces capabilities to conventional Instruction
Set Architectures. Capabilities combine a virtual address with metadata that
describes its corresponding bounds and permissions. Capabilities cannot be
forged, and can thus provide very strong guarantees. Arm has developed a
prototype architecture that adapts CHERI, as well as a prototype SoC and
development board, as part of the Arm Morello Program.

Of course, another approach to mitigating spatial memory safety vulnerabilities is
using a language that has been designed with spatial memory safety in mind. Such
languages make sure that all memory accesses are checked, either at compile-time
or runtime. For example, the Rust programming language introduces bounds
checks whenever the compiler cannot prove that an access is within bounds17.
There are many other memory safe languages, with different characteristics.
One example is JavaScript, a dynamically typed, usually JIT-compiled language.
We’ll discuss some of the issues that arise when implementing support for such
a language in the next section.

2.8 JIT compiler vulnerabilities
Compiler correctness is obviously very important, as miscompilation creates
buggy programs even when the source code has no bugs. What might be less
obvious is that these bugs can have security implications. For example, they can
introduce memory safety errors in languages that are otherwise memory safe. In
some cases, a bug might leave most programs unaffected and not cause security
issues in practice before it is detected and fixed. This is, of course, assuming
that the bug has not been intentionally injected in the compiler.

Compiler bugs are an interesting source of security issues for just-in-time (JIT)
compilers18. JIT compilation is often used in programs that receive source code
as input during program execution, for example in web browsers, for executing
JavaScript code included in web pages. In this context, the input to the JIT
compiler comes from arbitrary websites and is therefore untrusted. Bugs in
such JIT compilers can lead to compromise of the whole program (here, the
browser) if a malicious input (e.g. coming from a malicious website) deliberately

17Rust also provides features that provide temporal memory safety and thread safety.
18JIT compilers compile code during execution of a program, as opposed to the more

traditional compilation where code is compiled before the program is executed.
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triggers miscompilation in order to break memory safety of the language being
implemented.

For this section, we focus on JavaScript, which is a dynamically typed, memory
safe language, but the concerns we discuss also apply to other languages that
are compiled dynamically.

Without statically known types, in order to optimize JavaScript code, JavaScript
engines resort to type profiling (Pizlo 2020), recording the types encountered
while executing code. These types are then used during optimization, which
speculates that the same types will be encountered in future runs of the code,
and inserts checks to validate that these assumptions about types still hold.
When a check fails, the optimized code is replaced by unoptimized code that
can handle all types, a process known as deoptimization or on-stack replacement
(OSR). Deoptimization makes sure that the state of the deoptimized function is
recreated correctly for the point of execution where the type check failed.

For example, a function such as:

function foo(x, y) {
return x + y;

}

will return a number when x and y are numbers, but a string when either is
a string. An optimizing compiler can use the results of profiling to generate
optimized code. For example, when both arguments are integers during profiling,
it can generate code that looks like this in pseudocode:

foo:
if x not integer, deoptimize
if y not integer, deoptimize
result = x + y
if overflowed, deoptimize
return result

You may be wondering how the type checks are implemented, and this is closely
related to the representation of values in a JavaScript engine (Wingo 2011). In
short, JavaScript engines use specific bit patterns to indicate whether a value
should be interpreted as a pointer, or as an integer or floating-point value. For
example, the V8 JavaScript engine uses the least significant bit to denote that
a value is a pointer, otherwise it is a small integer (which needs to be shifted
down to access its value). Pointers then point to objects that contain a hidden
class member which is used for type checking.

In addition to the values for which typing information is gathered during profiling,
optimizing JavaScript compilers propagate the profiled types to dependent values.
For example if a value x is expected to be a string, and we check this assumption,
then x + 1 will also be a string (and no additional check is needed in this case).
In addition to simple type propagation, they usually perform range analysis to
determine as precise a range for a value as possible, which is useful for bounds
check elimination.

Bounds check elimination (BCE) is a common optimization in languages that
perform bounds checks on array accesses to ensure every accessed index is within
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the bounds of the array. BCE gets rid of bounds checks when they are proven to
be redundant, e.g. when the array access uses a constant index that’s known to
be smaller than the length of the array. See here for details on how out-of-bounds
array accesses behave in JavaScript.

Range analysis is a good example of an analysis where a JIT compiler bug can
introduce a vulnerability. Incorrect range analysis results can be used by bounds
check elimination to incorrectly eliminate bounds checks that should actually
have been maintained in the optimized code. For example, for the following
function:

function foo(x) {
y = bar(x);
var a = [0, 1, 2];
return a[y];

}

If range analysis decides that the value of y is in the range [0, 2], but in reality
the value is in the range [0, 3], the bounds check for the access a[y] can be
eliminated incorrectly, assuming the access is in-bounds. (Glazunov 2021) lists
a few examples of similar hypothetical vulnerabilities, along with examples of
vulnerabilities of this type that affected widely-used JavaScript engines.

The type of bug described above provides an attacker with a limited read or
write primitive, as a linear overflow of the array allocation occurs. The attacker
can then build on this primitive to get to an arbitrary read/write primitive.
As JIT compilers generate executable code at runtime, they often use memory
that is writable and executable at the same time. Such memory is very useful
to attackers, who can use an arbitrary write primitive to copy their payload
into this code memory, and then jump to it. Writable and executable memory,
therefore, makes JITs lucrative targets for attackers.

Bugs related to range analysis are just one of the common types of bugs encoun-
tered in a JavaScript engine. (Groß and Burnett 2022) lists some other common
types of bugs that result in violations of temporal and spatial memory safety, as
well as type safety, in JavaScript engines.

How can we defend against such vulnerabilities? There are several complementary
approaches, for example:

1. Use fuzzing to discover compiler bugs. For JavaScript, a useful fuzzing
tool is Fuzzilli.

2. Be more conservative when it comes to error-prone compiler optimizations
such as bounds check elimination. For example, the V8 JavaScript engine
has introduced hardening of bounds checks against typer bugs 19.

3. Instead of trying to prevent compiler (and other) bugs, assume they will
be present and introduce mitigations that prevent attackers from building
arbitrary read/write primitives on top of the initial limited primitives that
bugs provide. For example, for 64-bit architectures, V8 implements a
sandbox, built on top of pointer compression . With pointer compression,
pointers are represented by 32-bit indices off a base pointer instead of as
full 64-bit values. By making sure that all pointers inside the sandbox

19This naturally leads to attempts to bypass the hardening too (Fetiveau 2019).
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(where the JavaScript heap is located) are compressed, and that com-
pressed pointers always point inside the sandbox, a limited primitive that
allows overwriting memory within the sandbox cannot be used to build an
arbitrary read/write primitive by overwriting pointer values.

4. Preventing code memory from being executable and writable at the same
time is also desirable. This is known as WˆX . A naive implementation
of WˆX that simply switches memory permissions based on page tables
temporarily is not enough to prevent attackers from writing to code memory
(Song et al. 2015), when multiple threads are involved. A more effective
solution would use a separate compilation process, which is the only process
that has write access to the JIT’s code memory. Alternatively, some
architectures provide special features that can restrict page-based memory
permissions from userspace, effectively allowing permissions to be different
for different threads. Such features can also be of use in implementing
WˆX. For AArch64, this feature is called permission overlays.

In this section, we have discussed JIT compiler security and described JavaScript
compiler bugs that lead to vulnerabilities. Although we haven’t focused on the
details of JavaScript exploitation, an interested reader could take a look at (saelo
2021b) and (saelo 2021a).
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Chapter 3

Covert channels and
side-channels

Side-channels and covert channels are communication channels between two
entities in a system, where the entities should not be able to communicate that
way.

A covert channel is a channel where both entities intend to communicate. A
side-channel is a channel where one entity is the victim of an attack using the
channel.

The difference between a covert channel and a side-channel is whether both
entities intend to communicate. In a side-channel attack, the entity not intending
to communicate is called the victim. The other entity is sometimes called the
spy.

As we focus on attacks in this book, we’ll mostly use the term side-channels in
the rest of this chapter.

The next few sections describe a variety of side-channels. Each section focusses on
leakage through a specific so-called micro-architectural aspect, such as execution
time, cache state or branch predictor state.

3.1 Timing side-channels
An implementation of a cryptographic algorithm can leak information about the
data it processes if its run time is influenced by the value of the processed data.
Attacks making use of this are called timing attacks.

The main mitigation against such attacks consists of carefully implementing the
algorithm such that the execution time remains independent of the processed
data. This can be done by making sure that both:

a) The control flow, i.e. the trace of instructions executed, does not change
depending on the processed data. This guarantees that every time the
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algorithm runs, exactly the same sequence of instructions is executed,
independent of the processed data.

b) The instructions used to implement the algorithm are from the subset of
instructions for which the execution time is known to not depend on the
data values it processes.

For example, in the Arm architecture, the Armv8.4-A DIT extension
guarantees that execution time is data-independent for a subset of the
AArch64 instructions.

By ensuring that the extension is enabled and only instructions in the
subset are used, data-independent execution time is guaranteed.

At the moment, we do not know of a compiler implementation that actively
helps to guarantee both (a) and (b).

Using compiler techniques to transform a function such that it respects property
(a) is an active research area. (Wu et al. 2018) provides a method to convert
a program such that it respects property (a), albeit by potentially introducing
unsafe memory accesses. (Soares and Pereira 2021) improves on that result by
not introducing unsafe memory accesses, albeit by potentially needing to change
the interface of the transformed function.

Also
discuss
the tech-
niques im-
plemented
in the Con-
statine
compiler
#172

Also
discuss the
Jasmin lan-
guage and
compiler 1
2 #213

A great reference giving practical advice on how to achieve (a), (b) and more
security hardening properties specific for cryptographic kernels is found in (Pornin
2018).

As discussed in (Pornin 2018), when implementing cryptographic algorithms,
you also need to keep cache side-channel attacks in mind, which are discussed in
the section on cache side-channel attacks.

3.2 Cache side-channels
Caches are used in almost every computing system. They are small memories
that are much faster than the main memory. They automatically keep the most
frequently used data, so that the average memory access time improves.

When processes share a cache, various techniques exist to establish a covert
communication channel. These let the processes communicate through memory
accesses even when they do not share any memory location. We first describe
how caches work before exploring these techniques.

3.2.1 Typical CPU cache architecture
There is a wide variety in CPU cache micro-architecture details, but the main
characteristics that are important to set up a covert channel tend to be similar
across most popular implementations.

Caches are small and much faster memories than the main memory that aim to
keep a copy of the data at the most frequently accessed main memory addresses.
The set of addresses that are used most frequently changes quickly over time as
a program executes. Therefore, the addresses that are present in CPU caches
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also evolve quickly over time. The content of the cache may change with every
executed read or write instruction.

On every read and write instruction, the cache micro-architecture looks up if
the data for the requested address happens to be present in the cache. If it is,
the CPU can continue executing quickly; if not, dependent operations will have
to wait until the data returns from the slower main memory. A typical access
time is 3 to 5 CPU cycles for the fastest cache on a CPU versus hundreds of
cycles for a main memory access. When data is present in the cache for a read
or write, it is said to be a cache hit. Otherwise, it’s called a cache miss.

Most systems have multiple levels of cache, each with a different trade-off between
cache size and access time. Some typical characteristics might be:

• L1 (level 1) cache, 32KB in size, with an access time of 4 cycles.
• L2 cache, 256KB in size, with an access time of 10 cycles.
• L3 cache, 16MB in size, with an access time of 40 cycles.
• Main memory, gigabytes in size, with an access time of more than 100

cycles.

CPU

L1 cache

L2 cache

L3 cache

Main memory

Illustration of cache levels in a typical system

If data is not already present in a cache layer, it is typically stored there after it
has been fetched from a slower cache level or main memory. This is often a good
decision to make as there’s a high likelihood the same address will be accessed
by the program soon after. This high likelihood is known as the principle of
locality.

Data is stored and transferred between cache levels in blocks of aligned memory.
Such a block is called a cache block or cache line. Typical sizes are 32, 64 or
128 bytes per cache line.

When data that wasn’t previously in the cache needs to be stored in the cache,
room has to be made for it by removing, or evicting, some other address/data
from it. How that choice gets made is decided by the cache replacement policy.
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Popular replacement algorithms are Least Recently Used (LRU), Random and
pseudo-LRU. As the names suggest, LRU evicts the cache line that is least
recently used; random picks a random cache line; and pseudo-LRU approximates
choosing the least recently used line.

If a cache line can be stored in all locations available in the cache, the cache is
fully-associative. Most caches are however not fully-associative, as it’s too
costly to implement. Instead, most caches are set-associative. In an N-way
set-associative cache, a specific line can only be stored in one of N cache locations.
For example, if a line can potentially be stored in one of 2 locations, the cache
is said to be 2-way set-associative. If it can be stored in one of 4 locations, it’s
called 4-way set-associative, and so on. When an address can only be stored in
one location in the cache, it is said to be direct-mapped, rather than 1-way
set-associative. Typical organizations are direct-mapped, 2-way, 4-way, 8-way,
16-way or 32-way set-associative.

The set of cache locations that a particular cache line can be stored at is called
a cache set.

3.2.1.1 Indexing in a set-associative cache

For some cache covert channels, it is essential to know exactly how a memory
address maps to a specific cache set.

Address:  1001000010.....0001011101000101

L cache line offset bits

S cache set index bits

Cache set 29 (0b011101)

byte 5 (0b000101)

N ways

Tag bits

Tag bits match (0b1001000010......0001)

within the cache line

Figure 5: Illustration of indexing into a set-associative cache. In this example:
L = 6 bits, hence the cache line size is 26 = 64 bytes. S = 5 bits, so there are
25 = 32 cache sets. N can be independent of address bits used to index the
cache. If we assume N = 12 for a 12-way set-associative cache, the total cache
size is N ∗ 2L ∗ 2S = 12 ∗ 64 ∗ 32 = 24KB.

Specific bits in the memory address are used for different cache indexing purposes,
as illustrated in figure 5. The least-significant L bits, where 2L is the cache line
size, are used to compute an address’s offset within a cache line. The next S
bits, where 2S is the number of cache sets, are used to determine which cache
set an address maps to. The remaining top bits are “tag bits”. They are stored
alongside a line in the cache so later operations can detect which specific memory
address is replicated in that cache line.

For direct-mapped and fully-associative caches, the mapping of an address to

36



cache locations also works as described above. In fully-associative caches the
number of cache sets is 1, so S=0.

Also explain cache coherency ? #173

Also say something about TLBs and prefetching? #174

3.2.2 Operation of cache side-channels
Cache side-channels typically work by the spy determining whether a memory
access was a cache hit or a cache miss. From that information, the spy may be
able to deduce bits of data that only the victim should have access to.

Let’s illustrate this by describing a few well-known cache side-channels:

3.2.2.1 Flush+Reload

In a so-called Flush+Reload attack(Yarom and Falkner 2014), the spy process
shares memory with the victim process. The attack works in 3 steps:

1. The Flush step: The spy flushes a specific address from the cache.
2. The spy waits for some time to give the victim time to potentially access

that address, resulting in bringing it back into the cache.
3. The Reload step: The spy accesses the address and measures the access

time. A short access time means the address is in the cache; a long access
time means it’s not in the cache. In other words, a short access time means
that in step 2 the victim accessed the address; a long access time means it
did not access the address.

Should there be a more elaborate example with code that demonstrates in
more detail how a flush+reload attack works? #175

Knowing if a victim accessed a specific address can leak sensitive information.
Such as when accessing a specific array element depends on whether a specific
bit is set in secret data. For example, (Yarom and Falkner 2014) demonstrates
that a Flush+Reload attack can be used to leak GnuPG private keys.

3.2.2.2 Prime+Probe

In a Prime+Probe attack, there is no need for memory to be shared between
victim and spy. The attack works in 3 steps:

1. The Prime step: The spy fills one or more cache sets with its data, for
example, by accessing data that maps to those cache sets.

2. The spy waits for some time to let the victim potentially access data that
maps to those same cache sets.

3. The Probe step: The spy accesses that same data as in the prime step.
Measuring the time it takes to load the data, it can derive how many cache
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lines the victim evicted from each cache set in step 2, and from that derive
information about addresses the victim accessed.

(Osvik, Shamir, and Tromer 2005) first documented this technique in 2005 and
demonstrates extracting AES keys in just a few milliseconds.

3.2.2.3 General schema for cache covert channels

An attentive reader may have noticed that the attacks described above follow
a similar 3-step pattern. (Weber et al. 2021) describes this general pattern
and uses it to automatically discover more side-channels that follow this 3-step
pattern. They describe the general pattern as being:

1. An instruction sequence that resets the inner CPU state (reset sequence).
2. An instruction sequence that triggers a state change (trigger sequence).
3. An instruction sequence that leaks the inner state (measurement se-

quence).

Other cache-based side channel attacks following this general 3-step ap-
proach include: Flush+Flush(Gruss, Maurice, Wagner, et al. 2016),
Flush+Prefetch(Gruss, Maurice, Fogh, et al. 2016), Evict+Reload(Percival
2005), Evict+Time(Osvik, Shamir, and Tromer 2005), Reload+Refresh(Briongos
et al. 2020), Collide+Probe(Lipp et al. 2020), etc.

3.2.3 Mitigating cache side-channel attacks
As described in (Su and Zeng 2021), 3 conditions need to be met for a cache-based
side-channel attack to succeed:

1. There is a mapping between a state change in the cache and sensitive
information in the victim program.

2. The spy runs on a CPU that shares a cache level with the CPU the victim
runs on.

3. The spy can infer a cache status change caused by the victim through its
own cache status.

Mitigations against cache side-channel attacks can be categorized according to
which of the 3 conditions above they aim to prevent from happening:

3.2.3.1 Mitigations de-correlating cache state change with sensitive
information in the victim program

A typical example of when a cache state change could be correlated to sensitive
information is when a program uses secret information to index into an array.
An attacker could derive bits of the secret information by observing which cache
line was fetched.

Especially in crypto kernels, indexing into an array using a secret value is
generally avoided. An alternative mitigation is to always access all array indices,
independent of the secret value, e.g. as done in commit 46fbe375 to the PuTTY
project, which contains this comment:

* Side-channel considerations: the exponent is secret, so
* actually doing a single table lookup by using a chunk of
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* exponent bits as an array index would be an obvious leak of
* secret information into the cache. So instead, in each
* iteration, we read _all_ the table entries, and do a sequence
* of mp_select operations to leave just the one we wanted in the
* variable

3.2.3.2 Mitigations disallowing spy programs to share the cache with
the victim program

If the victim and the spy do not share a common channel – in this case a cache
level – then a side channel cannot be created.

One way to achieve this is to only allow one program to run at the same time,
and when a context switch does happen, to clear all cache content. Obviously,
this has a huge performance impact, especially in systems with multiple cores and
with large caches. Therefore, a wide variety of mitigations have been proposed
that aim to make attacks somewhat harder without losing too much system
efficiency. (Mushtaq et al. 2020) and (Su and Zeng 2021) summarize dozens of
proposals and implementations – too many to try to describe them all here.

One popular such mitigation is disabling cpu multithreading. For example,
Azure suggests that users who run untrusted code should consider disabling cpu
multithreading. The linux kernel’s core scheduling documentation also states
mutually untrusted code should not run on the same core concurrently. It
implements a scheduler that takes into account which processes are mutually-
trusting and only allows those to run simultaneously on the same core.

One could argue that site isolation as implemented in many web browsers is a
mitigation that also falls into this category. Site isolation is described in more
detail in its own section.

3.2.3.3 Mitigations disabling the spy program to infer a cache status
change in the victim program through its own cache status

In some contexts, the resolution of the smallest time increment measurable
by the spy program can be reduced so much that it becomes much harder to
distinguish between a cache hit and a cache miss. Injecting noise and jitter into
the timer also makes it harder to distinguish between a cache hit and cache
miss. This is one of the mitigations in javascript engines against Spectre attacks.
For more information see this v8 blog post or this Firefox documentation of the
performance.now() method.

Note that this is not a perfect mitigation - there are often surprising ways that
an attacker can get a fine-grained enough timer or use statistical methods to be
able to detect the difference between a cache hit or miss. One extreme example is
the NetSpectre attack (Schwarz et al. 2019) where the difference between cache
hit and cache miss is measured over a network, by statistically analyzing delays
on network packet responses. Furthermore, (Schwarz et al. 2017) demonstrates
how to construct high-resolution timers in various indirect ways in all browsers
that have removed explicit fine-grained timers.

Another possibility is to clear the cache between times when the victim runs
and the spy runs. This is probably going to incur quite a bit of performance
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overhead, and may also not always possible e.g. when victim and spy are running
at the same time on 2 CPUs sharing a cache level.

3.3 Branch-predictor based side-channels
3.3.1 Branch predictors
Most CPUs implement one or more instruction pipelines. In an instruction
pipeline, the next instruction is started before the previous instruction has
finished executing. When the previous instruction is a branch instruction, the
next instruction that needs to be executed is only known when that branch
instruction completes. However, waiting for the branch instruction to finish
before starting the next instruction leads to a big performance loss.1 Therefore,
most CPUs predict which instruction needs to be executed after a branch, before
the branch instruction has completed. Correctly and quickly predicting the
instruction after a branch instruction is so important for performance that most
CPUs have multiple branch predictors, such as:

• A predictor of the outcome of a conditional branch: taken or not taken.
The prediction is typically history-based, i.e. based on the outcome of this
and other branches in the recent past.

• A predictor of the target of a taken branch, i.e. the address of the next
instruction after a taken branch.

• A predictor that is specialized to predict the next instruction after a
function return instruction.

3.3.2 Side-channels through branch predictors
A number of attacks have been described over the past few years. The following
sections list a few examples, categorized per branch predictor component they
target.

3.3.2.1 Conditional branch direction predictor side-channel attacks

Two examples are BranchScope (Evtyushkin et al. 2018) and BlueThunder (Huo
et al. 2019). These attacks infer whether a branch is taken or not taken in a
victim process. They do so by carefully making sure that a branch in the spy
process uses the same branch predictor entry as the targeted branch in the victim
process. By measuring whether the branch in the spy process gets predicted
correctly, one can derive whether the branch in the victim process was taken or
not.

This can be thought of as somewhat akin to the Prime+Probe cache-based side
channel attacks.

When the outcome of a branch depends on a bit in a secret key, this can enable
an attacker to derive the value of the secret key. These papers demonstrate

1Over time, new CPU designs tend to support having more instructions in flight. (Eyerman
et al. 2009, sec. 4.2.3) suggests that branch prediction accuracy has to grow more than linearly
when the number of pipelines, or the depth of the pipeline grows. Therefore, there is a constant
push to increase the accuracy of branch predictors.

40

https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Branch_predictor


deriving the secret key from implementations of specific cryptographic kernels.
It can also be used to break ASLR.

3.3.2.2 Branch target predictor side-channel attacks

Two examples are SBPA (Aciiçmez, Kaya Koç, and Seifert 2007) and
BranchShadow (Lee et al. 2017). These earlier attacks are based on making
a branch in the spy process alias in the BTB with a targeted branch in the
victim process. They use methods such as timing difference, last branch records,
instruction traces or performance counters to measure whether the branch in
the spy process caused a specific state change in the BTB.

3.3.2.3 Return address predictor side-channel attacks

One example is Hyper-Channel (Bulygin 2008). In this case, a spy process
invokes N calls to fill up the return stack predictor. Then it lets the victim
process execute. Then, the spy process can measure how many of its return
stack entries have been removed from the RSB, by measuring the number of N
returns that get mis-predicted. If the number of calls in the victim process is
dependent on secret information, this could leak it.

The papers referred to above contain detailed explanations of how they set up
the attack. All of these attacks use a general 3-step approach, similar to cache
side channels:

1. An instruction sequence that resets the branch predictor state (reset
sequence), run by the spy process.

2. An instruction sequence that triggers a branch predictor state change
(trigger sequence), run by the victim process.

3. An instruction sequence that leaks the branch predictor state (measurement
sequence), run by the spy process

3.3.3 Mitigations

Describe the mitigations proposed against these side-channel attacks.
#203

3.4 Resource contention channels

3.5 Channels making use of aliasing in other
predictors

Should we also discuss more “covert” channels here such as power analy-
sis, etc? #176
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3.6 Transient execution attacks
3.6.1 Transient execution
3.6.1.1 Speculative execution

CPUs execute sequences of instructions. There are often dependencies between
instructions in the sequence. That means that the outcome of one instruction
influences the execution of a later instruction.

Apart from the smallest micro-controllers, all CPUs execute multiple instructions
in parallel. Sometimes even multiple hundreds of them at the same time, all
in various stages of execution. Instructions start executing while potentially
hundreds of previous instructions haven’t produced their results yet. How can a
CPU achieve this when the output of a previous instruction, which might not
have fully executed yet, and hence whose output may not yet be ready, may
affect the execution of that later instruction? In other words, there may be
a dependency between an instruction that has not finished yet and a later
instruction that the CPU also already started executing.

There are various kinds of dependencies. One kind is control dependencies,
where whether the later instruction should be executed at all is dependent on the
outcome of the earlier instruction. Other kinds are true data dependencies,
anti-dependencies and output dependencies. More details about these
kinds of dependencies can be found on the wikipedia page about them.

CPUs overcome parallel execution limitations imposed by dependencies by
making massive numbers of predictions. For example, most CPUs predict
whether conditional branches are taken or not, which is making a prediction
on control dependencies. Another example is a CPU making a prediction on
whether a load accesses the same memory address as a preceding store. If they do
not access the same memory locations, the load can run in parallel with the store,
as there is no data dependency between them. If they do access overlapping
memory locations, there is a dependency and the store should complete before
the load can start executing.

Starting to execute later instructions before all of their dependencies have been
resolved, based on the predictions, is called speculation.

Let’s illustrate that with an example. The following C code

long abs(long a) {
if (a>=0)

return a;
else

return -a;
}

can be translated to the following AArch64 assembly code:

cmp x0, #0
b.ge Lbb2

Lbb1:
neg x0, x0
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Lbb2:
ret

The b.ge instruction is a conditional branch instruction. It computes whether
the next instruction should be the one immediately after, or the one pointed to
by label Lbb2. In case it’s the instruction immediately after, the branch is said
to not be taken. Instead, if it’s the instruction pointed to be label Lbb2, the
branch is said to be taken. When the condition .ge (greater or equal) is true,
the branch is taken. That condition is defined or set by the previous instruction,
the cmp x0, #0 instruction, which compares the value in register x0 with 0.
Therefore, there is a dependency between the cmp instruction and the b.ge
instruction. To overcome this dependency, and be able to execute the cmp, b.ge
and potentially more instructions in parallel, the CPU predicts the outcome of
the branch instruction. In other words, it predicts whether the branch is taken
or not. The CPU will pick up either the neg or the ret instruction to start
executing next. This is called speculation, as the CPU speculatively executes
either instruction neg, or ret.

Show a second example of cpu speculation that is not based on branch
prediction. #177

Of course, as with all predictions, the CPU gets the prediction wrong from time
to time. In that case, all changes to the system state that affect the correct
execution of the program need to be undone. In the above example, if the branch
should have been taken, but the CPU predicted it to not be taken, the neg
instruction is executed incorrectly and changes the value in register x0. After
discovering the branch was mis-predicted, the CPU would have to restore the
correct, non-negated, value in register x0.

Any instructions that are executed under so-called mis-speculation, are called
transient instructions.2

The paragraph above says “the system state that affects the correct execution of
the program, needs to be undone”. There is a lot of system state that does not
affect the correct execution of a program. And the changes to such system state
by transient instructions is often not undone.

For example, a transient load instruction can fetch a value into the cache that
was not there before. By bringing that value in the cache, it could have evicted
another value from the cache. Whether a value is present in the cache does not
influence the correct execution of a program; it merely influences its execution
speed. Therefore, the effect of transient execution on the content of the cache is
typically not undone when detecting mis-speculation.

Sometimes, it is said that the architectural effects of transient instructions
need to be undone, but the micro-architectural effects do not need to be
undone.

The above explanation describes architectural effects as changes in system state
2Transient instructions caused by incorrect branch-direction prediction have also been called

wrong-path instructions Mutlu et al. (2004)
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that need to be undone after detecting mis-speculation. In reality, most systems
will implement techniques that keep all state changes in micro-architectural
buffers until it is clear that all predictions made to execute that instruction
were correct. At that point the micro-architectural state is committed to
become architectural state. In that way, mis-predictions naturally do not affect
architectural state.

Could
we find
a good
reference
that
explains
micro-
architectural
versus
architec-
tural state
in more
detail? Is
“Computer
Architec-
ture: A
Quanti-
tative
Approach”
the best
reference
available?

Faulting instructions are instructions that generate an exception at run-
time. Many instructions can generate an exception, and are hence potentially
faulting. For example most load and store instructions generate an exception
when the accessed address is not mapped. Since so many instructions can
generate an exception, processors typically speculate that they do not generate
an exception to enable more parallel execution.

When an instruction faults, the execution typically continues at another location.
Any instructions later in the instruction stream which are speculatively executed
before the fault is detected are also called transient instructions.

There is a kind of control dependency between every potentially-faulting in-
struction and the next one, as the next instruction to be executed depends
on whether the instruction generates an exception or not. We call out this
dependency separately here as the transient execution attacks we’ll describe next
get classified based on whether they make use of transient instructions after a
misprediction, or transient instructions after a faulting instruction.

3.6.2 Transient Execution Attacks
Transient execution attacks are a category of side-channel attacks that use
the micro-architectural side-effects of transient execution as a side channel.

The publication of the Spectre (Kocher et al. 2019) and Meltdown (Lipp et
al. 2018) attacks in 2018 started a period in which a large number of transient
attacks were discovered and published. Most of them were given specific names,
such as ZombieLoad, NetSpectre, LVI, Straight-line Speculation, etc. New
variants continue to be published regularly.

Covering each one of them in detail here would make the book overly lengthy,
and may not necessarily help much with gaining a better insight in the common
characteristics of transient attacks. Therefore, we’ll try to put them into a few
categories and describe the characteristics of each category.

Decide whether it’s useful to talk about alternative categorizations of
transient execution attacks, and if so, do add content. Consider pointing to
https://github.com/MattPD/cpplinks/blob/master/comparch.micro.chan
nels.md

The categorization below is based on one proposed in (Bulck et al., n.d.). There
are alternative categorizations. (Bulck et al., n.d.) defines 4 big classes of
transient side-channel attack categories, based on whether:

1. The transient execution happens because of a misprediction, or a faulting
instruction.
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2. The attacker actively steers data or control flow of the transient execution
or not.

This gives the following 4 categories:

Steering of transient execution by attacker?
No (Leakage) Yes (Injection)

Misprediction Branch-predictor based
side-channels

Spectre-style attacks

Faulting Meltdown-style attacks LVI-style attacks

3.6.2.1 Branch predictor-based side-channel attacks

We discussed this category already in the section on Side-channels through
branch predictors.

3.6.2.2 Spectre-style attacks

Add a description of Spectre-style attacks such as Spectre-PHT, Spectre-
BTB, Spectre-RSB, Spectre-STL, SpectreV1, SpectreV2, SpectreV3, Spec-
treV4, NetSpectre. #178

3.6.2.3 Meltdown-style attacks

Add a description of Meltdown-style attacks such as Meltdown, Fore-
shadow, LazyFP, Fallout, ZombieLoad, RIDL. #178

3.6.2.4 LVI-style attacks

Add a description of LVI-style attacks. #178

3.6.3 Mitigations against transient execution attacks
3.6.3.1 Site isolation

Write section on site isolation as a SpectreV1 mitigation #179

3.7 Physical access side-channel attacks
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Chapter 4

Supply chain attacks

A software supply chain attack occurs when an attacker interferes with the
software development or distribution processes with the intention to impact users
of that software.

Supply chain attacks and their possible mitigations are not specific to compilers.
However, compilers are an attractive target for attack because they are widely
deployed to developers, in continuous integration systems and as JITs. Also,
an infected compiler has the possibility to make a much larger impact if it can
silently spread the infection to other software created with or run using it.

This chapter explores the history of supply chain attacks that involve compilers
and what can be done to prevent them.

4.1 History of supply chain attacks
As far back as 1974 Karger & Schell theorized about an attack on the Multics
operating system via the PL/I compiler (Paul A. and Roger R. 1974). In this
attack, a trap door is inserted into the compiler, which then injects malicious
code into generated object code. Furthermore, the trap door could be designed
to reinsert itself into the compiler binary so that future compilers are silently
infected without needing changes to their source code. This attack method was
subsequently popularized by Ken Thompson in his 1984 ACM Turing Award
acceptance speech Reflections on Trusting Trust (Thompson 1984).

If these cases seem far-fetched then consider that there have been several real
examples of supply chain attacks on development tools.

Induc is a family of viruses that infects a pre-compiled library in the Delphi
toolchain with malicious code (Gostev 2009). When Delphi compiles a project
the malicious library is included into the resulting executable, thus enabling
the virus to spread. The virus was first detected in 2009 and was circulating
undetected for at least a year beforehand. Several popular applications are
known to have been infected, including a chat client and a media player. Overall,
in excess of a hundred thousand infected computers were detected world-wide
by anti-virus solutions.
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XcodeGhost is the name given to malware first detected in 2015 that infected
thousands of iOS applications (Cox 2015). The source of the infection was
tracked down to a trojanized version of Xcode tools. The malware exists in an
extra object file within the Xcode tools and is silently linked into each application
as it is built. File sharing sites were used to spread the trojanized Xcode tools
to unwitting developers.

A trojanized linker was found to be involved in a supply chain attack discovered
in 2017 named ShadowPad (Greenberg 2019). Some instances of the attack were
perpetrated using a trojanized Visual Studio linker that silently incorporates
a malicious library into applications as they are built. Related attacks named
CCleaner and ShadowHammer used the same approach of a trojanized linker to
infect built applications. Infected applications from these attacks were distributed
to millions of users world-wide.

These cases highlight that attacks on compilers, and especially linkers and
libraries, are a viable route to silently infect many other applications, and there
is no doubt that there will be more such attacks in the future. Let us now
explore what we can do about these.

Explain how these vulnerabilities arise and how to mitigate them. #180
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Chapter 5

Compiler introduced
security vulnerabilities

Security vulnerabilities introduced by compilers have a long history. Thompson
(Thompson 1984) provides one of the oldest and most popular examples in this
area. In his paper, he talks about a compiler that can detect when it is compiling
the login program and can insert a backdoor so that he can use the system as any
user. However most common cases are where involuntary security vulnerabilities
are added in the generated binary by the compiler.

Explain how code that results in undefined behaviour can often work
as the programmer expected until some optimisation is applied, and per-
haps even talk a bit about why compilers rely on the absence of undefined
behaviour in ways that appear aggressive in some occasions. #202

When discussing compiler introduced security vulnerabilities, undefined behavior
plays a major role. Its implications were thoroughly discussed by various works
such as (Wang et al. 2012) (D’Silva, Payer, and Song 2015) (Du, Wu, and Mao,
n.d.). By reading the works of these authors, one can see that even projects
that went through careful testing, such as Linux, FreeBSD or PostgreSQL, could
not escape from this class of vulnerabilities. To better understand them, this
chapter contains several examples of such vulnerabilities, their implications and
how they got fixed.

The first example is a 15 years old vulnerability that affected the random number
generator (RNG) in Mac OS X (Wang 2015). At some point in the past, this
vulnerability affected all *BSD operating systems, as they have a common
ancestor with Mac OS.

In the random number generator of the system, more specifically in
srandomdev(3), we can spot the following piece of code used in the seeding
logic:

struct timeval tv;
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unsigned long junk;

gettimeofday(&tv, NULL);
srandom((getpid() << 16) ˆ tv.tv_sec ˆ tv.tv_usec ˆ junk);

For generating a seed for the RNG, the code uses the current time and an
uninitialized value from the stack, i.e. junk. This triggers undefined behavior as
the C standard has no clear semantics for uninitialized loads. Because of that,
there was a huge difference in the generated assembly code for two different Mac
OS X releases.

In Mac OS X 10.6 the generated code looked like this:

leaq 0xe0(%rbp),%rdi
xorl %esi,%esi
callq 0x001422ca ; symbol stub for: _gettimeofday
callq 0x00142270 ; symbol stub for: _getpid
movq 0xe0(%rbp),%rdx
movl 0xe8(%rbp),%edi
xorl %edx,%edi
shll $0x10,%eax
xorl %eax,%edi
xorl %ebx,%edi
callq 0x00142d68 ; symbol stub for: _srandom

While for Mac OS X 10.7 the code looked like this:

leaq 0xd8(%rbp),%rdi
xorl %esi,%esi
callq 0x000a427e ; symbol stub for: _gettimeofday
callq 0x000a3882 ; symbol stub for: _getpid
callq 0x000a4752 ; symbol stub for: _srandom

In the shorter version of the generated assembly code, the compiler dropped
the whole argument of srandom as an optimization. While the optimised code
respects the standard, it leaves room for an attacker to exploit the system because
the seed of the RNG can now be predicted.

In the meantime, this problem has been resolved in FreeBSD (“FreeBSD Mit-
igation for Srandom Undefined Behavior” 2012) and OpenBSD (“OpenBSD
Mitigation for Srandom Undefined Behavior” 2002).

Current solutions for detecting this class of vulnerabilities include LLVM’s
MemorySanitizer and Valgrind.

The next example covers a new type of undefined behavior that can easily
introduce security vulnerabilities. This time we talk about dereferencing NULL
pointers and what might go wrong with this operation. The following piece of
code is taken from Linux and introduces a vulnerability by dereferencing the
tun pointer before it checks that the pointer is valid:

unsigned int
tun_chr_poll(struct file *file, poll_table * wait)
{

struct tun_file *tfile = file->private_data;
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struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
...

}

Normally, this would cause a crash in the kernel or the function would return
POLLERR if address 0 was mapped in the address space. However the compiler
assumes that tun is a valid pointer when the execution reaches the if statement.
This happens because it saw an earlier dereference just before the if statement.
In this situation, the check is considered redundant and deleted from the final
binary. This allows an attacker to continue executing code from tun_chr_poll
when address 0 is mapped.

To mitigate against this situation, GCC developers added a flag called
-fno-delete-null-pointer-checks that Linux integrated in its compiler
configuration.

Linux was not the only project that suffered from this problem. Chromium
(“Issue 3782: V8 Is Not -Fsanitize=null Clean” 2014) and Mozilla (“GCC6 - TB
Crashes Due to Removed Null Pointer Checks for "This"” 2016) had problems in
the past with this.

There are also cases of security vulnerabilities that are not introduced by unde-
fined behavior, the following piece of code is such an example. This was taken
from the Linux kernel. Because the compiler sees that the pointer hash is never
used after this point, it decides to delete the memset operation. We call this dead
store optimization (DSO) . This has serious security implications because the
intention of the programmer was to delete the hash information from memory.

static void extract_buf(struct entropy_store *r, __u8 *out) {
...
- memset(&hash, 0, sizeof(hash));
+ memzero_explicit(&hash, sizeof(hash));

}

The solution Linux came with was to add a new function called memzero_explicit
which under the hood looks like this:

void memzero_explicit(void *s, size_t count)
{

memset(s, 0, count);
OPTIMIZER_HIDE_VAR(s);

}

It still uses memset to delete the associated security sensitive data, but it also
tries to eliminate the risk of DSO by using the OPTIMIZER_HIDE_VAR
macro. This, however, is not enough to fully eliminate dead stores (“Lib:
Memzero_explicit: Use Barrier Instead of OPTIMIZER_HIDE_VAR” 2015).
In case of using LTO, the buffer s is still vulnerable. For this reason, Linux
maintainers added a further hardening mechanism by using a compiler barrier
instead:
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void memzero_explicit(void *s, size_t count)
{
memset(s, 0, count);
- OPTIMIZER_HIDE_VAR(s);
+ barrier();

}

There is still room for improvement regarding the introduced barrier (“Lib: Make
Memzero_explicit More Robust Against Dead Store Elimination” 2015). If the
content of the buffer is present in registers, then the compiler blindly proves
again that the DSO can be triggered and the memset will be again deleted. To
mitigate against this, the following patch was proposed:

+ #define barrier_data(ptr) \
+ __asm__ __volatile__("": :"r"(ptr) :"memory")

void memzero_explicit(void *s, size_t count)
{
memset(s, 0, count);
- barrier();
+ barrier_data(s);

}

In this patch we create a new barrier that will be guaranted to put the content
of the buffer in memory so that DSO can take no further effect.

Similar efforts were conducted in other projects such as OpenSSL (“Lib: Make
Memzero_explicit More Robust Against Dead Store Elimination” 2016). The
approach OpenSSL used is rather different but it achieves the same end goal,
i.e. eliminating the effect of DSO. By making memset_func a volatile pointer to
the actual implementation of memset, the compiler is forced to dereference the
pointer to get to the actual memset, thus eliminating the risk of optimizing it
out.

The C23 committee decided to tackle this problem from another angle, i.e. by
adding a library function called memset_explicit (“Memset_explicit” 2021).
This function requires the compiler to not optimize the memory overwrite away.
However it is not trivial to implement such a functionality, as GNU presents in
(“10.604 Memset_explicit,” n.d.). The information may be present somewhere
in the machine, even if it was erased from memory.
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Chapter 6

Physical attacks

This chapter should probably be moved under section ‘Physical access
side-channel attacks’ higher-up #181

6.1 Overview
There are many types of physical attacks – these attack methods focus on one
or multiple physical properties of systems ( e.g. CPU, GPU, crypto hardware),
and can either be

• Passive – just monitoring physical quantities (e.g. side channel information
leakage), or

• Active – modification of physical quantities, for example, by
– changing the operation conditions of the system so that the circuit

operates outside its specifications (e.g. by changing temperature, or
by applying glitches to supply voltage/clock source)

– injecting faults to the system (e.g. altering the electrical state of the
system using Electromagnetic pulse injection, or laser beam)

– physically modifying the system/chip

In the rest of this section, we will focus on a subset of physical attacks:

• Side channel information leakage
• Physical attack using glitches

These two forms of attacks can be carried out using low cost hardware, and have
been widely demonstrated by researchers on SoCs or microcontrollers developed
for IoT (Internet-of-Things) applications.

6.2 Physical access side-channel attacks
If an attacker has physical access to a device, even without debug access, the
attacker can collect side channel information about the program execution on a
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processor. If the processor is used to handle cryptographic operations, the side
channel information can be used to deduce the crypto key(s) or the data being
processed. Please note that some forms of physical attacks (e.g. fault injection
attacks like rowhammer and voltjockey) do not require physical access, but those
attacks are not covered in this section.

6.2.1 How is information leaked?
The most common physical access side channel attack method is to capture the
voltage or current consumption of the device during its operation. Every time
a flip-flop toggles, the switching activity results in a small current spike. Even
though there is capacitance on the power distribution connections inside the chip,
the toggling of registers (composed of flip-flops) still results in variations in the
power supply current, which can be observed easily. Because the connections for
delivering power (at the power supply, printed circuit board, on chip packages
as well as on the silicon dies) also contain resistance, the variation of electrical
current in the chip’s power supply also results in variations in the power supply
voltage. Again, this can be observed easily if the attacker has physical access to
the device. If an attacker has access to data acquisition equipment that can record
the current/voltage/power patterns, he/she can record the “power signature”
for different crypto operations, including the power signature using different
data inputs. By applying analysis techniques like differential power analysis,
the attacker can extract the information being processed. One additional form
of side-channel leakage is electro-magnetic radiation. Because the processor’s
clock frequency is usually in the radio frequency (RF) range, the wires on the
die and the tracks on the PCB become small antennas, and the ripples in the
processor’s voltage/current results in radio frequency signals. Although the
RF power radiated can be tiny, it still means that an attacker can observe the
side-channel leakage if he/she is in close proximity from the device and has the
right equipment to amplify and record the RF power signature. However, the
risk of such attack can be reduced by reducing the radiation energy level using:

• Shielding around the device, including ground plate on the circuit board.
• Coupling capacitors on power supply tracks on the printed circuit board.

Generally, such an attack requires knowledge of radio circuit techniques and the
result can be affected by other factors. For example, in normal environments
there are many other source of RF noises that affects the accuracy of signal
measurement. In a “noisy” environment, the RF signals from various wireless
communication gadgets nearby might drown out the signals from the device
being monitored.

6.2.2 Side channel leakage at instruction level
Instruction executions can result in various forms of side channel leakage:

Cycle timing resulting from conditional branch – A code sequence containing a
conditional branch could result in observable side channel leakage. For example,
if the power signatures of several code segments are easily recognizable (process
A, B and C in the following diagram), it is possible to detect if the conditional
branch was taken or not.
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Process A

Cond. 
branch

Process B

Process C

Power signature 
when the branch is 

not taken

Power signature 
when the branch is  

taken

Time Time

leakage of conditional branch

Cycle timing resulting from specific data values – The execution cycles of some
instructions can be dependent on the values of input data, resulting in timing
side-channel leakage. E.g., the integer divide instruction in Arm Cortex-M
processors.

Process A

UDIV

Process C

Power signature shows the number 
of cycles for the UDIV instruction to 
execute, hence leaking hint about 

input data range.

Time

leakage of execution cycle

Power variation due to value changes – The power spikes in the power signature
are often dependent on a combination of how many bits are set and how many bits
have toggled in the register(s) — the so-called Hamming weight and Hamming
distance, so the amplitude of the spike could be used to guess the register value
in that clock cycle. The power spikes can be caused by a combination of

• Logic switching due to the operations of an instruction (e.g. power consumed
by a single cycle multiplier can be much higher than the power used by a
Boolean logic function), and

• Logic switching due to changes in data values in the register bank and
data paths.

The switching activities are dependent on preceding and next operations. If the
power signature of the codes around a specific instruction is recognizable, then
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the data value being process could be guessed.

Process A

X=X+1

Loop

Time

X toggled 
only 1-bit

X toggle 5-bit, 
e.g. could be 
0x0F to 0x10

X could be changed 
0xFF to 0x100

leakage of number of bit toggled

In some SoC or microcontroller implementations, the power spike effect of the
operations can be much higher than the effect of data value changes in the
register banks. In such case the program execution flow can be observed, and
as a result, might also indirectly leak information about the data that it is
processing.

6.2.3 Countermeasures
For normal embedded devices that don’t have physical protection features, there
is a much higher chance that power/voltage/radiation side channels can result
in information leakage. However, some aspects of timing signature leakage could
be reduced:

• Using data processing instruction with data independent timing for cryp-
tographic operations. In recent Arm architectures (including Armv8-A
and Armv8-M), some instructions are architecturally defined as DIT (Data
Independent Timing).

• For conditional branches where the condition is dependent on secret data,
use table branch instead might help reduce timing base leakage (both paths
result in a branch). It is not necessary to replace all conditional branch.
For example, many loop counters in crypto operation can be independent
to the crypto key or input data values, so there is no need to change those
loops.

There is overlap with section timing-side-channels. How to best consoli-
date that? #182

There are additional software techniques to mitigate power leakage. One of
the most well-known techniques is masking (e.g. Boolean, multiplicative, affine).
When applying software mitigation, software developers need to check that
optimizations carried out by compilers (C/C++) do not impact the mitigation,
as compilers can be very smart and undo the masking in order to perform faster
operations (or reducing code size).
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6.3 Fault injection attacks
6.3.1 Common forms of Fault injection attacks
If an attacker has physical access to a device, they can also choose to use
physical attacks to modify the behavior of the software, for example, prevent the
software from setting up certain security features during the device’s initialization
sequence. The two most common forms of such attacks are voltage glitching and
clock glitching.

Voltage glitch

Time

Supply 
voltage Minimum 

voltage for 
the device

Point of attack

Clock glitch

Time

(Type 1: clock width)

(Type 2: clock interval)

common fault injection attacks

• Voltage glitch attack
– Using a programmable power supply that can switch the voltage level

rapidly, it is possible to reduce/increase the power supply voltage of
a chip at specific clock cycle of the software execution. In some case,
a precise voltage drop can cause a processor to “skip” an instruction,
for example, the write to memory or a hardware register might not
be taken. Or if a write has taken place, the actual write value used
could be changed by the voltage glitch.

• Clock glitch attack
– Using a clock switching circuit, it is possible to reduce the width of

a clock pulse, or the interval between two clock pulses so that some
of the hardware registers are not updated correctly at certain clock
edge(s). Similar to voltage glitch, this can make the hardware seems
to be skipping an instruction.

Such voltage/clock glitch attack could affect multiple parts in the processors, but
sometimes the impact might not lead to any visible error in the operation, leaving
the only effect that the processor skipping a memory/register write, or writing an
incorrect value. Potentially, a glitch attack could result in other observable effect
(e.g. register reset, bit toggle). The analysis of fault injection methods (and their
physical effect) and the observable effects at the program or instruction execution
level are often referred to as fault models, where one can say that a specific fault
injection behaves as an instruction skip, etc. More details about the concept of
fault models can be found in the paper “Fault Attacks on Secure Embedded Soft-
ware: Threats, Design and Evaluation” (https://arxiv.org/pdf/2003.10513.pdf),
where a good illustration of the concept is shown in figure 1 of that paper.

Make the above reference to a paper use bibtex. #159
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Using glitching methods, there are several common ways of attacking a system.
For example:

• Skipping an instruction during setup sequence for security features – e.g.
skipping the write to the MPU (Memory Protection Unit)/Security Attri-
bution Unit (SAU) so that the MPU/SAU is not enabled.

• Skipping an instruction after a security authentication that branch to an
error handling code. As the branch is not taken, the code can continue to
operate even a security authentication has failed.

• Causing an incorrect value to be written in a memory or hardware. E.g.
When writing a crypto key to a crypto accelerator, forcing the key value
written to be zero (caused to low voltage on bus hardware).

Example: Attack on TrustZone for Armv8-M: https://www.youtube.com/watch?v=4u6BAH8mEDw

There are other forms of physical attacks, but most of them requires significant
effort or cost (e.g. cut open the chip package can carry out fault injection or
readout secret data on chip).

6.3.2 Countermeasures
Ideally, system designers can use hardware (SoCs or microcontroller) that support
protection against fault injection. For example, a hardware circuit can include
redundancy logic (spatial and temporal). In addition, software developers can
make such attack harder by adding checks after the write operations. When ap-
plying software mitigation, software developers need to check that optimizations
carried out by compilers (C/C++) do not impact the mitigation.
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Chapter 7

Other security topics
relevant for compiler
developers

Write chapter with other security topics.
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Appendix: contribution
guidelines

If you’d like to start contributing to this book: please do, we’re looking forward
to your contributions!

The project lives on github at https://github.com/llsoftsec/llsoftsecbook. We
also have a Discord server where you can have an interactive chat with us at
https://discord.gg/Bm55Z9Ppgn.

We use github issues as our issue tracker and use github pull requests to accept
edits, changes, additions and more.

If you’d like to contribute, but are not sure where to start, the list of open issues
labeled with “good first issue” may give you inspiration of things to contribute.
Please, also don’t be shy to reach out to us on Discord.

We follow the Contributor Covenant Code of Conduct in this project.

For more details on how to write text for the book, please read contributing.md.
If after reading that, you think some specific aspects could be explained better,
please do let us know by raising an issue.
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Todo list

1. Add section describing the structure of the rest of the book. . . . . . . 5
2. Discuss threat models elsewhere in book and refer to that section here

#161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3. Consider describing in more detail why the range limitation matters#162 7
4. The references in this section describe complicated modern exploits.

Consider linking to simpler exploits, as well as some tutorial-level
material. #163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5. Explain how these gadgets could result from C/C++ code. The current
versions are slightly tweaked by hand to have more manageable offsets.
#164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6. The gadgets in the figure are made up, chosen to highlight that each
gadget can end in a different type of indirect control flow transfer
instruction. Consider replacing them with more realistic ones. #165 17

7. Add more references to relevant research #166 . . . . . . . . . . . . . . 22
8. Mention more Pointer Authentication uses in later section, and add link

here #167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9. Add diagram to demonstrate how HWASAN works #168 . . . . . . . . 26
10. Consider adding a whole section on MTE and its applications #169 . 26
11. Describe other mechanisms for detecting memory errors, both software-

based (static analysis, library and buffer hardening) and hardware-
based, e.g. PAuth-based pointer integrity schemes, MTE etc #170 . 27

12. Also discuss the techniques implemented in the Constatine compiler
#172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13. Also discuss the Jasmin language and compiler 1 2 #213 . . . . . . . 34
14. Also explain cache coherency ? #173 . . . . . . . . . . . . . . . . . . 37
15. Also say something about TLBs and prefetching? #174 . . . . . . . . 37
16. Should there be a more elaborate example with code that demonstrates

in more detail how a flush+reload attack works? #175 . . . . . . . . 37
17. Describe the mitigations proposed against these side-channel attacks.

#203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
18. Should we also discuss more “covert” channels here such as power

analysis, etc? #176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
19. Show a second example of cpu speculation that is not based on branch

prediction. #177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
20. Could we find a good reference that explains micro-architectural versus

architectural state in more detail? Is “Computer Architecture: A
Quantitative Approach” the best reference available? . . . . . . . . . 44
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21. Decide whether it’s useful to talk about alternative categorizations
of transient execution attacks, and if so, do add content. Consider
pointing to https://github.com/MattPD/cpplinks/blob/master/com
parch.micro.channels.md . . . . . . . . . . . . . . . . . . . . . . . . . 44

22. Add a description of Spectre-style attacks such as Spectre-PHT,
Spectre-BTB, Spectre-RSB, Spectre-STL, SpectreV1, SpectreV2,
SpectreV3, SpectreV4, NetSpectre. #178 . . . . . . . . . . . . . . . 45

23. Add a description of Meltdown-style attacks such as Meltdown, Fore-
shadow, LazyFP, Fallout, ZombieLoad, RIDL. #178 . . . . . . . . . 45

24. Add a description of LVI-style attacks. #178 . . . . . . . . . . . . . . 45
25. Write section on site isolation as a SpectreV1 mitigation #179 . . . . 45
26. Explain how these vulnerabilities arise and how to mitigate them. #180 47
27. Explain how code that results in undefined behaviour can often work

as the programmer expected until some optimisation is applied, and
perhaps even talk a bit about why compilers rely on the absence of
undefined behaviour in ways that appear aggressive in some occasions.
#202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

28. This chapter should probably be moved under section ‘Physical access
side-channel attacks’ higher-up #181 . . . . . . . . . . . . . . . . . . 52

29. There is overlap with section timing-side-channels. How to best
consolidate that? #182 . . . . . . . . . . . . . . . . . . . . . . . . . 55

30. Make the above reference to a paper use bibtex. #159 . . . . . . . . . 56
31. Write chapter with other security topics. . . . . . . . . . . . . . . . . 58
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